首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using variances in hydrocarbon concentration and carbon stable isotope to determine the important influence of irrigated water on petroleum accumulation in surface soil
Authors:Juan Zhang  Renqing Wang  Juncheng Yang  Hong Hou  Xiaoming Du  Jiulan Dai
Institution:1. Environmental Research Institute, Shandong University, Ji’nan, 250100, China
2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
4. Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Ji’nan, 250100, China
3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
Abstract:Hunpu is a wastewater-irrigated area southwest of Shenyang. To evaluate petroleum contamination and identify its sources at the area, the aliphatic hydrocarbons and compound-specific carbon stable isotopes of n-alkanes in the soil, irrigation water, and atmospheric deposition were analyzed. The analyses of hydrocarbon concentrations and geochemical characteristics reveal that the water is moderately contaminated by degraded heavy oil. According to the isotope analysis, inputs of modern C3 plants and degraded petroleum are present in the water, air, and soil. The similarities and dissimilarities among the water, air, and soil samples were determined by concentration, isotope, and multivariate statistical analyses. Hydrocarbons from various sources, as well as the water/atmospheric deposition samples, are more effectively differentiated through principal component analysis of carbon stable isotope ratios (δ13C) relative to hydrocarbon concentrations. Redundancy analysis indicates that 57.1 % of the variance in the δ13C of the soil can be explained by the δ13C of both the water and air, and 35.5 % of the variance in the hydrocarbon concentrations of the soil can be explained by hydrocarbon concentrations of both the water and the air. The δ13C in the atmospheric deposition accounts for 28.2 % of the δ13C variance in the soil, which is considerably higher than the variance in hydrocarbon concentrations of the soil explained by hydrocarbon concentrations of the atmospheric deposition (7.7 %). In contrast to δ13C analysis, the analysis of hydrocarbon concentrations underestimates the effect of petroleum contamination in the irrigated water and air on the surface soil. Overall, the irrigated water exerts a larger effect on the surface soil than does the atmospheric deposition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号