首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The invasive grass Agropyron cristatum doubles belowground productivity but not soil carbon
Authors:Macdougall Andrew S  Wilson Scott D
Institution:Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1 Canada.
Abstract:Root dynamics are among the largest knowledge gaps in determining how terrestrial carbon (C) cycles will respond to environmental change. Increases in productivity accompanying plant invasions and introductions could increase ecosystem C storage, but belowground changes are unknown, even though roots may account for 50-90% of production in temperate ecosystems. We examined whether the introduction of a widespread invasive grass with relatively high shoot production also increased belowground productivity and soil C storage, using a multiyear rhizotron study in 50-year-old stands dominated either by the invasive C3 grass Agropyron cristatum or by largely C4 native grasses. Relative to native vegetation, stands dominated by the invader had doubled root productivity. Soil carbon isotope values showed that the invader had made detectable contributions to soil C. Soil C content, however, was not significantly different between invader-dominated stands (0.42 mg C/g soil) and native vegetation (0.45 mg C/g soil). The discrepancy between enhanced production and lack of soil C changes was attributable to differences in root traits between invader-dominated stands and native vegetation. Relative to native vegetation, roots beneath the invader had 59% more young white tissue, with 80% higher mortality and 19% lower C:N ratios (all P < 0.05). Such patterns have previously been reported for aboveground tissues of invaders, and we show that they are also found belowground. If these root traits occur in other invasive species, then the global phenomenon of increased productivity following biological invasion may not increase soil C storage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号