首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A dynamic model of the global iodine cycle and estimation of dose to the world population from releases of iodine-129 to the environment
Authors:DC Kocher
Institution:Health and Safety Research Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Abstract:A dynamic linear compartment model of the global iodine cycle has been developed for the purpose of estimating radiological impacts on the world population from releases of 129I to the environment. The time-invariant fractional transfer rates, which describe the transport of 129I between environmental compartments comprising the atmosphere, hydrosphere, lithosphere, and terrestrial biosphere, are estimated from an analysis of available data on concentrations for naturally occurring stable iodine and data on the global hydrologic cycle. The global radiological impacts on man from a given release of 129I are estimated from the calculated compartment inventories as a function of time and models for the intake of iodine by a reference adult. For a constrant population of 12.2 billion, the estimated worldwide complete population dose commitment to the thyroid is 76 man-Sv/GBq (2.8 × 105 man-rem/Ci) released. Estimated values of the incomplete population dose commitment at various times after a global-scale release to the atmosphere are also presented.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号