首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influences of salinity on the biokinetics of Cd, Se, and Zn in the intertidal mudskipper Periophthalmus cantonensis
Authors:Ni I-Hsun  Chan S M  Wang Wen-Xiong
Institution:

aDepartment of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung 20224, Taiwan

bDepartment of Biology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong

Abstract:The biokinetics (aqueous uptake, dietary assimilation, and elimination) of Cd, Se, and Zn in the intertidal mudskipper, Periophthalmus cantonensis, were examined at different acclimated salinities using the radiotracer technique. The dietary assimilation efficiency from ingested radiolabeled polychaetes was the highest for Se (32–40%), followed by Zn (5–7%) and Cd (2–3%), and was not influenced by salinity within a range of 10–30 psu. Uptake from the dissolved phase typically exhibited a linear pattern within the first 12 h of exposure, followed by a second slower uptake. The highest concentration factor (CF) was found for Zn, followed by Cd and Se. Differences in salinity did not significantly affect the CF of the three metals within the first 12 h, but the CFs were significantly higher at lower salinities (10–20 psu) than at the highest salinity (30 psu) by the end of 48 h exposure. Because the degrees to which the uptake of Se (a metalloid) and Cd/Zn were affected by salinity were comparable, we concluded that metal speciation as a result of salinity change was not important in leading to a change in metal CF. Physiological changes may be responsible for the increasing uptake at lowered salinity. The elimination rates of the three metals (0.01–0.06 d?1) were not significantly affected by salinity, but Se was eliminated at a faster rate following aqueous uptake than following dietary ingestion. There was no consistent influence of exposure routes on Cd and Zn elimination. The accumulated Cd was mainly associated with the gut, whereas the muscle was the dominant target site for Se and Zn accumulation.
Keywords:Mudskipper  Polychaete  Bioaccumulation  Trophic transfer  Cadmium  Selenium  Zinc
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号