首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Field controlled experiments on the physiological responses of maize (Zea mays L.) leaves to low-level air and soil mercury exposures
Authors:Zhenchuan Niu  Xiaoshan Zhang  Sen Wang  Ming Zeng  Zhangwei Wang  Yi Zhang  Zhijia Ci
Institution:1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
2. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
3. Department of Environmental Sciences, College of Urban and Environmental Sciences, Northwest University, Xi’an, 710027, China
Abstract:Thousands of tons of mercury (Hg) are released from anthropogenic and natural sources to the atmosphere in a gaseous elemental form per year, yet little is known regarding the influence of airborne Hg on the physiological activities of plant leaves. In the present study, the effects of low-level air and soil Hg exposures on the gas exchange parameters of maize (Zea mays L.) leaves and their accumulation of Hg, proline, and malondialdehyde (MDA) were examined via field open-top chamber and Hg-enriched soil experiments, respectively. Low-level air Hg exposures (<50 ng m?3) had little effects on the gas exchange parameters of maize leaves during most of the daytime (p?>?0.05). However, both the net photosynthesis rate and carboxylation efficiency of maize leaves exposed to 50 ng m?3 air Hg were significantly lower than those exposed to 2 ng m?3 air Hg in late morning (p?<?0.05). Additionally, the Hg, proline, and MDA concentrations in maize leaves exposed to 20 and 50 ng m?3 air Hg were significantly higher than those exposed to 2 ng m?3 air Hg (p?<?0.05). These results indicated that the increase in airborne Hg potentially damaged functional photosynthetic apparatus in plant leaves, inducing free proline accumulation and membrane lipid peroxidation. Due to minor translocation of soil Hg to the leaves, low-level soil Hg exposures (<1,000 ng g?1) had no significant influences on the gas exchange parameters, or the Hg, proline, and MDA concentrations in maize leaves (p?>?0.05). Compared to soil Hg, airborne Hg easily caused physiological stress to plant leaves. The effects of increasing atmospheric Hg concentration on plant physiology should be of concern.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号