首页 | 本学科首页   官方微博 | 高级检索  
     

珠江三角洲秋季臭氧干沉降特征的数值模拟
引用本文:耿一超,田春艳,陈晓阳,申冲,王雪梅,常鸣,王明洁,陈训来,樊琦. 珠江三角洲秋季臭氧干沉降特征的数值模拟[J]. 中国环境科学, 2019, 39(4): 1345-1354
作者姓名:耿一超  田春艳  陈晓阳  申冲  王雪梅  常鸣  王明洁  陈训来  樊琦
作者单位:1. 中山大学大气科学学院, 广东省气候变化与自然灾害研究重点实验室, 广东 广州 510275;2. 暨南大学环境与气候研究院, 广东 广州 510632;3. 深圳市国家气候观象台, 广东 深圳 518040
基金项目:国家重点研发计划(2017YFC0210105,2016YFC0203305,2016YFC0203600);国家自然科学基金资助项目(91544102,41630422);深圳市科技计划项目(JCYJ20170306150333250);气象行业专项项目(GYHY201406031)
摘    要:利用区域化学传输模式WRF-Chem对2014年10月珠江三角洲臭氧干沉降特征进行模拟,结果表明:臭氧干沉降通量呈现明显的时空分布差异,日间平均沉降通量[0.68μg/(m2·s)]明显大于夜间[0.21μg/(m2·s)];同时,珠江三角洲城区的臭氧沉降通量及日较差均比周边植被覆盖区小.受NOx和VOCs等前体物以及各气象要素场的综合影响,臭氧浓度日变化具有明显的单峰型分布特征,在14:00~15:00达到峰值,秋季臭氧浓度高值区位于珠江三角洲主要排放源下风向区域的广佛交界、江门及中山东部等地区;臭氧的干沉降速率也具有明显的时空变化特征:从07:00~08:00的0.27cm/s开始迅速增大,10:00~16:00基本保持在0.60cm/s左右,17:00开始平缓减小至午夜的0.21cm/s左右;干沉降速率的变化主要受空气动力学阻抗Ra、粘性副层阻抗Rb以及表面阻抗Rc影响,研究表明夜间的干沉降速率主要受Ra影响,而日间Rc起主要作用.这3种阻抗分别受大气稳定度、摩擦速度和下垫面土地利用类型影响,在珠江三角洲区域亦表现出明显的时空变化特征.

关 键 词:珠江三角洲  WRF-Chem模式  臭氧干沉降  干沉降速率  阻抗  
收稿时间:2018-09-14

Numerical simulation of ozone dry deposition characteristics in autumn over the Pearl River Delta region,China
GENG Yi-chao,TIAN Chun-yan,CHEN Xiao-yang,SHEN Chong,WANG Xue-mei,CHANG Ming,WANG Ming-jie,CHEN Xun-lai,FAN Qi. Numerical simulation of ozone dry deposition characteristics in autumn over the Pearl River Delta region,China[J]. China Environmental Science, 2019, 39(4): 1345-1354
Authors:GENG Yi-chao  TIAN Chun-yan  CHEN Xiao-yang  SHEN Chong  WANG Xue-mei  CHANG Ming  WANG Ming-jie  CHEN Xun-lai  FAN Qi
Affiliation:1. School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China;2. Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China;3. Shenzhen National Climate Observatory, Shenzhen 518040, China
Abstract:The regional chemical transport model WRF-Chem was used to simulate the spatial and temporal characteristics of O3 dry deposition flux in the Pearl River Delta (PRD) region in October 2014. The results show obvious spatial and temporal differences of ozone dry deposition flux: the mean flux in the daytime [0.68μg/(m2·s)] was higher than that in the night time [0.21μg/(m2·s)]; the O3 deposition flux and its diurnal variation in the urban areas are smaller than those in the sub-urban areas. Moreover, the O3 concentrations had obvious daily single-peak distribution characteristics which influenced by the precursors such as NOx and VOCs, as well as the meteorological conditions. The peaks generally occur during 14:00~15:00, and the high concentrations were mainly located in the Guangfo junction、Jiangmen city and east Zhongshan city. The dry deposition velocity of O3 also present significant spatial and temporal variations. It increased rapidly from 0.27cm/s during 07:00~08:00 to a relatively stable value 0.60cm/s during 10:00~16:00; and then decreased slowly to 0.21cm/s from 17:00 to midnight. The dry deposition velocity was mainly affected by three types of resistances: the aerodynamic resistance (Ra), sublayer resistance(Rb) and canopy resistance(Rc). Our results show that the dry deposition velocity at night was mainly affected by Ra, while in the daytime Rc played a major role. These three resistances were mainly influenced by the stability、the friction velocity and the landuse type of the underlying surface.
Keywords:Pearl River Delta  WRF-Chem model  ozone dry deposition  dry deposition velocity  resistances  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号