首页 | 本学科首页   官方微博 | 高级检索  
     

基于替代模型的地下水DNAPLs污染源反演识别
引用本文:侯泽宇,卢文喜,王宇. 基于替代模型的地下水DNAPLs污染源反演识别[J]. 中国环境科学, 2019, 39(1): 188-195
作者姓名:侯泽宇  卢文喜  王宇
作者单位:1. 吉林大学, 地下水与资源环境教育部重点实验室, 吉林 长春 130021;2. 吉林大学环境与资源学院, 吉林 长春 130021
基金项目:国家自然科学基金项目(41672232);吉林省科技发展计划项目(20170101066JC)
摘    要:应用基于核极限学习机替代模型的模拟-优化理论和方法研究解决了地下水DNAPLs污染源及含水层参数的同步反演识别问题.结果表明:1)核极限学习机替代模型对模拟模型有较高的逼近精度,能够识别并模仿模拟模型的输入-输出关系,绝大部分相对误差小于5%,平均相对误差仅有2.98%;2)以替代模型代替模拟模型,大幅度地减小了模拟-优化过程的计算负荷,将反演识别时间由传统方法的83天减少到3小时,并能够保持较高的计算精度;3)应用基于模拟退火的粒子群优化算法求解优化模型,能够以较快的速度搜寻到全局最优,同时避免搜索过程陷于局部极小解.

关 键 词:DNAPLs  污染源反演识别  模拟-优化  多相流模拟  核极限学习机替代模型  
收稿时间:2018-06-04

Surrogate-based source identification of DNAPLs-contaminated groundwater
HOU Ze-yu,LU Wen-xi,WANG Yu. Surrogate-based source identification of DNAPLs-contaminated groundwater[J]. China Environmental Science, 2019, 39(1): 188-195
Authors:HOU Ze-yu  LU Wen-xi  WANG Yu
Affiliation:1. Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China;2. College of Environment and Resources, Jilin University, Changchun 130021, China
Abstract:Groundwater contamination source identification (GCSI) is critical for taking effective actions in designing remediation strategies, estimating risks, and confirming responsibility. Surrogate-based simulation-optimization technique was applied to source identification and parameter estimation of DNAPLs-contaminated aquifer in this article. The results showed that:1) kernel extreme learning machines (KELM) surrogate model approximated the simulation model accurately. It could simulate the input/output relationship of the simulation model with most of the relative errors less than 5%, and the mean relative error was only 2.98%; 2) Replacing the simulation model with a KELM model considerably reduced the computational burden of the simulation-optimization process and maintained high computation accuracy, the identification time was reduced to 3hours from 83days; 3) Simulated annealing-based particle swarm optimization algorithm is efficient in searching the global optimal solution of the nonlinear programming optimization model, and avoiding the optimization process trapping into local optimum.
Keywords:Dense non-aqueous phase liquids (DNAPLs)  contamination source identification  simulation-optimization  multi-phase flow simulation  KELM surrogate model  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号