首页 | 本学科首页   官方微博 | 高级检索  
     

基于通勤时间距离的LE污水处理过程故障检测方法
引用本文:陈如清,李嘉春,俞金寿. 基于通勤时间距离的LE污水处理过程故障检测方法[J]. 中国环境科学, 2019, 39(2): 657-665
作者姓名:陈如清  李嘉春  俞金寿
作者单位:1. 嘉兴学院机电工程学院, 浙江 嘉兴 314001;2. 嘉兴学院数理与信息工程学院, 浙江 嘉兴 314001;3. 华东理工大学自动化研究所, 上海 200237
基金项目:浙江省基础公益研究计划项目(LGG18F030011);国家自然科学基金资助项目(61603154)
摘    要:污水处理过程的性能监测与故障诊断,对于保障污水处理过程正常运行及保证出水质量达标具有重要意义.针对污水处理过程数据具有非线性、不确定性及且易受随机噪声影响等特征,提出了一种新的基于通勤时间距离的LE流形学习算法实现对复杂过程数据的特征提取.改进算法采用通勤时间距离方式进行样本间的相似度衡量并构造邻域图,理论分析和仿真测试表明改进算法可有效克服基本LE算法的邻域参数敏感问题并提高了算法的鲁棒性.将基于通勤时间距离的LE流形学习算法用于污水处理过程故障检测建模,在低维流形子空间构造综合统计量进行过程监测.应用结果表明,与基于PCA方法和LE方法的故障检测模型相比,基于改进算法的故障检测模型可及时探测故障的发生,具有较低的故障漏报率和故障误报率.为污水处理等复杂工业过程的故障监测提供了一种可行的解决方案.

关 键 词:污水生化处理过程  故障检测建模  通勤时间距离  非线性噪声数据  LE算法  
收稿时间:2018-07-31

Fault detection of wastewater treatment processes by using commute time distance based LE algorithm
CHEN Ru-qing,LI Jia-chun,YU Jin-shou. Fault detection of wastewater treatment processes by using commute time distance based LE algorithm[J]. China Environmental Science, 2019, 39(2): 657-665
Authors:CHEN Ru-qing  LI Jia-chun  YU Jin-shou
Affiliation:1. College of Mechanical and Electrical Engineering, Jiaxing University, Jiaxing 314001, China;2. College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing 314001, China;3. Research Institute of Automation, East China University of Science and Technology, Shanghai 200237, China
Abstract:Performance monitoring and fault diagnosis for wastewater treatment processes was of great significance for safeguarding the normal operation of the treatment process and ensuring the standard quality of effluent water. Aiming at the problems of nonlinearity, uncertainty and susceptibility to random noises in wastewater treatment process, an improved Laplacian Eigenmap (LE) manifold learning algorithm based on commuting time distance (CTD) was proposed to realize the feature extraction of the complex process data. In this algorithm, CTD was used to measure the similarity between samples and construct the neighborhood graph. Both theoretical analysis and simulation test proved that the proposed algorithm could efficiently overcome the sensitivity problem caused by neighborhood parameter and improve the robustness of the normal LE algorithm. Then the CTD based LE algorithm was applied in fault detection modeling for actual wastewater treatment process, and the fault monitoring statistic was constructed in the low-dimensional feature subspace. Application results showed that CTD-LE based model can timely detect the faults with lower missing rate and false rate as compared with normal PCA based model and normal LE based model. Application results showed that this method could provide a feasible solution for fault monitoring of complex industrial processes such as wastewater treatment.
Keywords:wastewater biological treatment process  fault detection modeling  commute time distance  nonlinear noisy data  Laplacian Eigenmap  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号