首页 | 本学科首页   官方微博 | 高级检索  
     

中国全要素能源效率测算及其驱动因素
引用本文:陈菁泉,连欣燕,马晓君,米军. 中国全要素能源效率测算及其驱动因素[J]. 中国环境科学, 2022, 42(5): 2453-2463
作者姓名:陈菁泉  连欣燕  马晓君  米军
作者单位:1. 东北财经大学经济与社会发展研究院, 辽宁 大连 116025;2. 东北财经大学统计学院, 辽宁大连 116025;3. 四川大学经济学院, 四川 成都 610065
基金项目:国家社会科学基金资助项目(19VDL002,21&ZD148);
摘    要:为敦促中国全要素能源效率提升,遵循中国全要素能源效率测算、驱动因素分析的研究路径,首先以中国30个省份、直辖市、自治区(不包括西藏、香港、澳门和台湾)的面板数据为研究对象,将能源足迹纳入非期望产出指标,旨在使全要素能源效率测度指标更加科学;其次采用更适宜于面板数据的动态随机非参数数据包络分析法(StoNED)测度全要素能源效率,并按全国、八大经济区、分省3个层面分析测算结果;再次结合因变量为截断数据且可能存在空间效应的特性,构建包含环境规制、对外贸易、科研经费、能源消费结构、人口规模、产业结构6个驱动因素的空间误差面板Tobit回归模型(SEM-Tobit),研究中国全要素能源效率驱动因素效应;最后探求提升全要素能源效率的政策建议.研究发现:就全要素能源效率测度结果而言,从全国来看,中国全要素能源效率大致呈先下降后上升的分布特征;从区域来看,八大综合经济区全要素能源效率呈现由沿海向内陆逐渐收敛的发展态势;从具体省域来看,沿海省份全要素能源效率相对较高,但同一地区不同省份间全要素能源效率水平存在一定差异;从驱动因素分析结果来看,环境规制、能源消费结构对全要素能源效率呈现显著的负向作用,而产业结构、人口规模、对外贸易、科研经费对全要素能源效率呈现积极推动作用.

关 键 词:全要素能源效率  动态StoNED模型  空间误差面板Tobit回归  驱动因素分析  
收稿时间:2021-10-16

Total factor energy efficiency measurement and drivers in China
CHEN Jing-quan,LIAN Xin-yan,MA Xiao-jun,MI Jun. Total factor energy efficiency measurement and drivers in China[J]. China Environmental Science, 2022, 42(5): 2453-2463
Authors:CHEN Jing-quan  LIAN Xin-yan  MA Xiao-jun  MI Jun
Affiliation:1. Economic and Social Development Institute, Dongbei University of Finance and Economics, Dalian 116025, China;2. Department of Statistics, Dongbei University of Finance and Economics, Dalian 116025, China;3. Department of Economics, Sichuan University, Chengdu 610065, China
Abstract:In order to urge the improvement of total factor energy efficiency in China, Firstly, the panel data of 30 provinces, municipalities directly under the central government and autonomous regions of China (excluding Tibet, Hong Kong, Macao and Taiwan) were used to incorporate the energy footprint into the non-expected output indicators, aiming to make the total factor energy efficiency measures more scientific. Secondly, a dynamic stochastic non-parametric data envelopment analysis (StoNED), which is more suitable for panel data, was used to measure total factor energy efficiency, and the results are analysed at three levels: national, eight economic regions and sub-provinces. A spatial error panel Tobit regression model (SEM-Tobit) was constructed to investigate the effects of the drivers of total factor energy efficiency in China, and finally, policy recommendations are explored to improve total factor energy efficiency. The study finds that: in terms of total factor energy efficiency measurement results, from a national perspective, China's total factor energy efficiency generally shows a decreasing and then increasing distribution, from a regional perspective, the total factor energy efficiency of the eight comprehensive economic zones shows a gradual convergence from coastal to inland, from a provincial perspective, the total factor energy efficiency of coastal provinces is relatively high, but there are some differences in the level of total factor energy efficiency between different provinces in the same region. From the analysis of the drivers, environmental regulation and energy consumption structure have a significant negative effect on total factor energy efficiency, while industrial structure, population size, foreign trade and research funding have a positive effect on total factor energy efficiency.
Keywords:total factor energy efficiency  dynamic StoNED model  spatial error panel-Tobit regression  driver analysis  
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号