首页 | 本学科首页   官方微博 | 高级检索  
     检索      

PM2.5与O3协同控制视角下深圳市工业VOCs源谱特征
引用本文:黄沛荣,朱波,张月,黄晓锋,朱乔,于广河,颜敏,梁永贤,何凌燕.PM2.5与O3协同控制视角下深圳市工业VOCs源谱特征[J].中国环境科学,2022,42(8):3473-3482.
作者姓名:黄沛荣  朱波  张月  黄晓锋  朱乔  于广河  颜敏  梁永贤  何凌燕
作者单位:1. 北京大学深圳研究生院环境与能源学院大气观测超级站实验室, 广东 深圳 518055;2. 深港产学研基地(北京大学香港科技大学深圳研修院), 广东 深圳 518057;3. 深圳市环境科学研究院, 广东 深圳 518001
基金项目:深圳市科技计划(JCYJ20210324135408022);;广东省基础与应用基础研究基金(2019A1515110793);
摘    要:选取深圳8类典型工业行业开展VOCs样品采集,检测分析了100种VOCs组分,从PM2.5和O3协同控制的角度分析了不同污染源的成分谱特征和对环境的影响.结果表明:加油站源谱组成以烷烃(48.4%)占主导,OVOCs (27.6%)占比突出,乙酸乙酯(14.1%)、异戊烷(13.0%)、正戊烷(12.0%)为其优势排放物种;涂料制造、胶黏剂生产、油墨制造、化工制品、纺织印染、医药制造行业排放组成均以OVOCs (42.3%~97.1%)占主导,丙酮为大多数行业的优势物种,且乙腈在部分行业中占比突出.垃圾发电行业以OVOCs (33.9%)和卤代烃(28.3%)占主导,乙醛(13.4%)、丙酮(11.0%)、一氯甲烷(6.1%)为该行业排放的优势物种.以PM2.5和O3协同控制为导向,芳香烃和烯烃是储存运输源需要控制的重点;OVOCs和芳香烃都应成为工艺过程源和废弃物处理源控制的关键.涂料制造行业的源反应活性SRO3和SRSOA值分别为6.0g/g和1.2g/g,削减单位质量排放的VOCs所减少的PM2.5和O3生成潜势最多,应成为深圳市PM2.5和O3协同控制下的优先控制行业.

关 键 词:工业  挥发性有机物  源成分谱  协同控制  PM2.5  
收稿时间:2022-01-25

Source profile characteristics of industrial VOCs in Shenzhen from the perspective of PM2.5 and O3 synergistic control
HUANG Pei-rong,ZHU Bo,ZHANG Yue,HUANG Xiao-feng,ZHU Qiao,YU Guang-he,YAN Min,LIANG Yong-xian,HE Ling-yan.Source profile characteristics of industrial VOCs in Shenzhen from the perspective of PM2.5 and O3 synergistic control[J].China Environmental Science,2022,42(8):3473-3482.
Authors:HUANG Pei-rong  ZHU Bo  ZHANG Yue  HUANG Xiao-feng  ZHU Qiao  YU Guang-he  YAN Min  LIANG Yong-xian  HE Ling-yan
Institution:1. Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China;2. PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen 518057, China;3. Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
Abstract:100 VOCs components of samples were detected taken from 8 typical industries in Shenzhen so as to characterize different sources and analyze their impacts on PM2.5 and ozone pollution. The results show that, of all emissions from gas stations, alkanes accounted for 48.4%, followed by oxygenated VOCs (27.6%), ethyl acetate (14.1%), isopentane (13.0%), and n-pentane (12.0%). While oxygenated VOCs were mainly emitted from manufacture of coating, adhesives, ink, chemicals, textile printing and dyeing agents, pharmaceutical products, etc., accounting for 42.3%~97.1% of all VOCs. Furthermore, acetone was dominantly emitted from most industries and acetonitrile from some industries. For waste-to-energy industry, oxygenated VOCs and halogenated hydrocarbons contributed 33.9% and 28.3%, respectively, followed by acetaldehyde (13.4%), acetone (11.0%) and chloromethane (6.1%). For synergistically controlling PM2.5 and ozone, aromatic hydrocarbons and olefins generated from storage and transportation are the primary compounds to be mitigated; and oxygenated VOCs and aromatic hydrocarbons are the key components to be controlled in processing industry and waste disposal. Because of high SRO3 (6.0g/g) and SRSOA (1.2g/g) in coating manufacture, to most effectively mitigate PM2.5 and ozone by reducing per unit of VOCs emissions should become the priority for synergistically controlling PM2.5 and ozone in Shenzhen.
Keywords:industry  VOCs  source profile  synergistic control  PM2  5  
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号