首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A split flow chamber with artificial sediment to examine the below-ground microenvironment of aquatic macrophytes
Authors:Kasper Elgetti Brodersen  Daniel Aagren Nielsen  Peter J Ralph  Michael Kühl
Institution:1. Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, 15 Broadway, Ultimo, Sydney, NSW, 2007, Australia
2. Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsing?r, Denmark
3. Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
Abstract:We present a new experimental set-up enabling fine-scale examination of how changing environmental conditions affect the below-ground biogeochemical microenvironment of aquatic macrophytes. By means of microsensor and planar optode technology, the influence of plant-mediated radial O2 release on the below-ground chemical microenvironment of Zostera muelleri and Halophila ovalis was determined in high spatio-temporal resolution. The seagrass specimens were cultured in a new split flow chamber with artificial sediment made of a deoxygenated seawater–agar solution with added sulphide. Microelectrode measurements revealed radial O2 release from the root–shoot junction of both Z. muelleri and H. ovalis during both light stimulation and darkness, resulting in a rapid decrease in H2S concentration, and a significant drop in pH was observed within the plant-derived oxic microzone of Z. muelleri. No radial O2 release was detectable from the below-ground tissue of Z. muelleri during conditions of combined water-column hypoxia and darkness, leaving the plants more susceptible to sulphide invasion. The spatial O2 heterogeneity within the immediate rhizosphere of Z. muelleri was furthermore determined in two dimensions by means of planar optodes. O2 images revealed a decrease in the spatial extent of the plant-derived oxic microzone surrounding the below-ground tissue during darkness, supporting the microelectrode measurements. This new experimental approach can be applied to all rooted aquatic plants, as it allows for direct visual assessment of the below-ground tissue surface during microprofiling, while enabling modification of the above-ground environmental conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号