首页 | 本学科首页   官方微博 | 高级检索  
     

成渝城市群碳排放时空特征及其影响因素
引用本文:韦彦汀,李思佳,张华. 成渝城市群碳排放时空特征及其影响因素[J]. 中国环境科学, 2022, 42(10): 4807-4816
作者姓名:韦彦汀  李思佳  张华
作者单位:中国地质大学(北京)经济管理学院, 北京 100083
基金项目:北京市社会科学基金资助项目(16GLC074)
摘    要:利用2008~2018年成渝城市群内16个城市的面板数据,运用空间自相关和时空地理加权回归模型,探究了城市群碳排放的时空演变格局,揭示了碳排放影响因素的时空异质性.结果表明,成渝城市群碳排放整体呈增长态势,总量由5亿t增加到6.6亿t,增速约为1500t/a,地均碳排放量和人均碳排放量也存在波动上涨趋势.碳排放总量热点区域集中在成都和重庆,分别占总量约20%和25%,冷点区域为雅安市.碳排放总量和地均碳排放均存在显著的空间差异,人均碳排放的莫兰指数为正,呈现明显的空间聚集格局.整体上,人均碳排放表现出东北低-西南高的空间结构特征,南充,遂宁,广安是低低聚集区域.城市群中各个城市的影响因素显示出时空异质性,能源强度、经济发展水平、人口规模对城市的碳排放都有明显正向作用,在成渝中西部城市作用强度大;而城市化水平的正向影响较弱,对成渝东部城市影响较强.

关 键 词:成渝城市群  碳排放  空间自相关  GTWR模型  影响因素  
收稿时间:2022-03-04

Temporal-spatial evolution of carbon emission and driving factors in the Chengdu-Chongqing urban agglomeration
WEI Yan-ting,LI Si-jia,ZHANG Hua. Temporal-spatial evolution of carbon emission and driving factors in the Chengdu-Chongqing urban agglomeration[J]. China Environmental Science, 2022, 42(10): 4807-4816
Authors:WEI Yan-ting  LI Si-jia  ZHANG Hua
Affiliation:School of Economics and Management, China University of Geosciences(Beijing), Beijing 100083, China
Abstract:The spatial auto-correlation model and the geographically and temporally weighted regression model were applied in this study to explore the spatial-temporal evolution pattern and influencial factors of carbon emissions in 16cities of Chengdu-Chongqing urban agglomeration during the period of 2008~2018. The results showed that the overall carbon emissions were growing, with the total amount increased from 500 million tons to 660 million tons at a growth rate of about 1500 t/a. The land-average carbon emissions and per capita carbon emissions also had a fluctuating upward trend. The hot spots were Chengdu and Chongqing, accounted for about 20% and 25% of the total carbon emissions respectively, while the cold spot was Ya'an. There were significant spatial differences in both total carbon emissions and land-average carbon emissions. The Moran index of per capita carbon emissions was positive, showing an obvious spatial aggregation pattern. On the whole, the per capita carbon emissions demonstrated the spatial structure characteristics of "lower in the northeast-higher in the southwest", with Nanchong, Suining, and Guang'an being the lower-gathering areas. The influencial factors of each city showed spatial and temporal heterogeneity. Energy intensity, economic development level, and population size all had a significant positive effect on urban carbon emissions, and the effect was strong in the central and western cities; while the positive effect of urbanization level was weak, and the impact on the eastern cities was stronger.
Keywords:Chengdu-Chongqing urban agglomeration  carbon emission  spatial autocorrelation  GTWR model  driving factor  
点击此处可从《中国环境科学》浏览原始摘要信息
点击此处可从《中国环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号