Mitigation of greenhouse gas emissions in European conventional and organic dairy farming |
| |
Affiliation: | 1. Department of Food, Agriculture and Resource Economics, University of Guelph, Guelph, Ontario, Canada;2. School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada |
| |
Abstract: | Dairy farming is the largest agricultural source of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in Europe. A whole-farm modeling approach was used to investigate promising mitigation measures. The effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions. The potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and to investigate region and system specific differences. An optimized lifetime efficiency of dairy cows reduced GHG emissions by up to 13% compared to baseline model farms. The evaluation of frequent removal of manure from animal housing into outside covered storage reduced farm GHG emissions by up to 7.1%. Scraping of fouled surfaces per se was not an effective option since the reduction in GHG emissions from animal housing was more than out-weighed by increased emissions from the storage and after field application. Manure application by trail hose and injection, respectively, was found to reduce farm GHG emissions on average by 0.7 and 3.2% compared to broadcasting. The calculated model scenarios for anaerobic digestion demonstrated that biogas production could be a very efficient and cost-effective option to reduce GHG emissions. The efficiency of this mitigation measure depends on the amount and quality of organic matter used for co-digestion, and how much of the thermal energy produced is exploited. A reduction of GHG emissions by up to 96% was observed when all thermal energy produced was used to substitute fossil fuels. Potential measures and strategies were scaled up to the level of European regions to estimate their overall mitigation potential. The mitigation potential of different strategies based on a combination of measures ranged from −25 up to −105% compared to baseline model farms. A full implementation of the most effective strategy could result in a total GHG emission reduction of about 50 Mt of carbon dioxide (CO2) equivalents per year for conventional dairy farms of EU(15) comparable to the defined model farms. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|