首页 | 本学科首页   官方微博 | 高级检索  
     检索      

利用源示踪技术计算日本和韩国低层大气SO2和PSO4来源
引用本文:王继康,徐 峻,何友江,程念亮,孟 凡.利用源示踪技术计算日本和韩国低层大气SO2和PSO4来源[J].环境科学研究,2014,27(6):582-588.
作者姓名:王继康  徐 峻  何友江  程念亮  孟 凡
作者单位:1.中国环境科学研究院, 环境基准与风险评估国家重点实验室, 北京 100012
基金项目:国家环境保护公益性行业科研专项(201009002)
摘    要:利用区域空气质量模式CAMx中的PAST(源示踪技术)对2010年东亚地区的总硫(SO2+PSO4)的源-受体关系进行了模拟计算. 模拟区域内共设定43个源区,其中在中国领土范围内设定了33个源区. 在源-受体关系计算中,将日本本岛分为北部、中部和南部三部分,分别设为受体区域,同时还将远离陆地的海洋背景点冲绳和韩国济州岛设为受体点.模拟结果表明,日本本岛北部、中部和南部的总硫来源存在一定的差异:日本本国的贡献率分别为73.8%、77.1%和65.9%,中国的贡献率分别为23.5%、20.2%和25.8%. 韩国本土总硫的本国贡献率为67.8%,中国的贡献率为27.2%. 对韩国济州岛和日本冲绳而言,二者总硫的本国贡献率均为26.0%,远低于日、韩两国的其他地区,不能代表国家间跨界输送的总体状况. 受体区域跨界输送的总硫季节变化明显,而且各区域的变化趋势也并不一致,其中日本南部地区和韩国本土1月最强,7月最弱;日本北部和中部地区在4月最强,1月最弱. 跨界传输的总硫对日本和韩国总硫贡献量小于2.5 μg/m3.对于日、韩两国影响较大的中国源区主要为山东、河北、江苏、辽宁等地,各源区对于日、韩总硫贡献量的季节变化明显. 东亚地区低空总硫的传输通量空间分布与利用CAMx模拟的2010年日本和韩国总硫的源-受体关系结果相一致. 

关 键 词:    源与受体关系    东亚地区    数值模拟    CAMx
收稿时间:2013/9/18 0:00:00
修稿时间:2014/3/19 0:00:00

Source Apportionment of Sulfur in the Lower Atmosphere of Japan and Korea Using Tag Method
WANG Ji-kang,XU Jun,HE You-jiang,CHENG Nian-liang and MENG Fan.Source Apportionment of Sulfur in the Lower Atmosphere of Japan and Korea Using Tag Method[J].Research of Environmental Sciences,2014,27(6):582-588.
Authors:WANG Ji-kang  XU Jun  HE You-jiang  CHENG Nian-liang and MENG Fan
Institution:1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.Beijing Municipal Environmental Monitoring Center, Beijing 100048, China
Abstract:Source relationships were calculated for surface sulfur oxide (SO2+sulphate) concentrations in East Asia using the CAMx model with Particulate Matter Source Apportionment Technology (PSAT). The domain was divided into 43 source regions including 33 source regions in China. Three regions in the Japanese main islands (northern, central, and southern Japan), as well as the Korean peninsula and Cheju Island of Korea and the Okinawa islands of Japan were set as receptors. The greatest contributions to the sulfur oxides in the northern, central, and southern parts of Japan were emissions from Japan itself, accounting for 73.8%, 77.1% and 65.9% respectively, while the second greatest contributions to sulfur oxides in the three receptors were emissions from China, supplying 23.5%, 20.2% and 25.8%, respectively. As for Korea, 67.8% of the sulfur oxides in the Korean peninsula originated from Korea and 27.2% from China. For Cheju and Okinawa islands, the sulfur oxide sources were different from other areas in Korea and Japan. The seasonal variations of trans-boundary sulfur oxide pollution contribution in the receptors varied from the north to the south. The greatest contribution of trans-boundary sulfur oxide pollution in Korea and southern Japan occurred in January, while the lowest contribution happened in July. In northern and central Japan, the greatest contribution occurred in April, while the lowest happened in January. The concentrations of trans-boundary sulfur oxide pollution in Japan and Korea were low:less than 1.5 μg/m3 in Japan and less than 2.5 μg/m3 in the Korean peninsula. Among Chinese source regions, Shandong, Hebei, Jiangsu and Liaoning were the main sources contributing to sulfur oxides in Japan and Korea. The spatial distribution of sulfur oxide horizontal transport flux at low altitude well matched the source-receptor relationships. 
Keywords:sulfur  source-receptor relationships  East Asia  CAMx
本文献已被 CNKI 等数据库收录!
点击此处可从《环境科学研究》浏览原始摘要信息
点击此处可从《环境科学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号