首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diagnosis on the sustainability of an upland cropping system of southern Haiti
Institution:1. Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;2. Division of Entomology, Natural History Museum, University of Kansas, 1501 Crestline Drive – Suite 140, Lawrence, Kansas 66045-4415, USA;3. Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA;4. Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
Abstract:An impact assessment of current upland cropping systems in Haiti was carried out using a combined experimental and agronomic survey approach on fields that were chosen as being representative of the diversity of land use practices and intensities. These cropping systems were mostly developed on ferralsols with differing degrees of weathering owing to the varying depths to the limestone bedrock. Three soil types for which the CEC of the mineral fraction was less than 3, 4–7, or 11–18 cmol(+) kg−1 were distinguished. The study shows that apart from phosphorus, soil cation availability (K, Mg) is the most limiting factor for a successful bean crop. With the insertion of a fertilized cabbage crop into the rotation, the soil bioavailable P at the sowing of the bean–maize intercrop (BMI) did not significantly increase, whereas the exchangeable K content of the soils increased from 0.22 to 0.38 and led to a significant increase in the bean yield from 654 to 1079 kg ha−1. It is clear that the trend of the cropping systems towards a shorter fallow period, increasing frequency of the BMI and introduction of N–P–K fertilizers, may all increase crop production in the short term. However, these changes are unlikely to lead to sustained benefits. One of the potential risks is the soil Mg depletion due to K fertilization as revealed by a microlysimeter experiment. Another risk is the increased proportion of plants with bean root diseases, due to the shortening of the BMI rotation interval. The proportion of plants with bean root diseases increased from 7 to 22% in 1989 and from 10 to 39% in 1990, when the bean rotation interval was reduced from 3 to 1 years. Another risk is the spatial spread of fall armyworm (Spodoptera frugiperda) from the plots covered with residues of a preceding maize crop, to the neighboring plots recently sown with maize. Future research should therefore focus on optimizing the K:Mg ratio of fertilizer, breeding bean varieties resistant to Fusarium disease, diversifying the range of crops cultivated, and management of the maize residues. The evolution of the cropping systems in the last 10 years is somewhat consistent with the diagnosis made about 15 years earlier.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号