首页 | 本学科首页   官方微博 | 高级检索  
     


Non-linear autoregressive neural network approach for inside air temperature prediction of a pillar cooler
Authors:M.P. Islam  T. Morimoto
Affiliation:Department of Biomechanical Systems, Faculty of Agriculture, Ehime University, Matsuyama, Japan
Abstract:The volcanic plate made pillar cooler system is designed for outdoor spaces as a heat exchanging medium and reduces the outcoming air temperature which flows through the exhaust port. This paper proposes the use of artificial neural networks (ANNs) to predict inside air temperature of a pillar cooler. For this purpose, at first, three statistically significant factors (outside temperature, airing and watering) influencing the inside air temperature of the pillar cooler are identified as input parameters for predicting the output (inside air temperature) and then an ANN was employed to predict the output. In addition, 70%, 15% and 15% data was chosen from a previously obtained data set during the field trial of the pillar cooler for training, testing and validation, respectively, and then an ANN was employed to predict inside air temperature. The training (0.99918), testing (0.99799) and validation errors (0.99432) obtained from the model indicate that the artificial neural network model (NARX) may be used to predict inside air temperature of pillar cooler. This study reveals that, an ANN approach can be used successfully for predicting the performance of pillar cooler.
Keywords:Artificial neural network  inside air temperature  NARX  pillar cooler
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号