Abstract: | Many numerical models which describe the movement of a separate organic liquid phase in the subsurface require information about the relationships between capillary pressure and saturation, and between relative permeability and saturation. An evaluation of the information available for these relationships suggests that substantial discrepancies may be introduced into simulations if estimated, rather than measured, data are employed. The purpose of this study was to quantify these deviations. Two-phase displacement simulations were performed in one and two dimensions for several organic liquid-water systems. Both constant-head and constant-flux boundary conditions were employed at a variety of flow rates and time scales, using both measurements and estimates of capillary pressure and relative permeability for a sandy aquifer material. The results demonstrate that the use of estimated transport relationships produces significantly different predictions of organic liquid migration. The magnitude of the deviations between predictions may be as high as 25% or more after relatively short displacement periods, depending on the boundary conditions of the simulated scenario, as well as on the physical characteristics of the two-phase system. For the systems examined, most of the deviations resulted from the estimates for relative permeability to the organic liquid. Thus, improved methods for the estimation of the relative permeability to the organic liquid are needed to reduce the uncertainty in displacement simulations. |