首页 | 本学科首页   官方微博 | 高级检索  
     检索      


OPTIMAL ALLOCATION OF ARTIFICIAL AERATION ALONG A POLLUTED STREAM USING DYNAMIC PROGRAMMING1
Authors:Shin Chang  William W-G Yeh
Abstract:ABSTRACT: When a series of aerators are used to raise the level of dissolved oxygen in a polluted stream through instream artificial aeration augmentation, the system is governed by the basic dissolved oxygen mass balance equation with the existence of artificial aeration as its boundary conditions. A mathematical model is formulated for the optimization of the allocation of aeration capacity to each of the series of aerators subject to a limitation on total available aeration capacity. The objective function is the minimization of the sum of the squares of the aeration costs and the costs incurred by damaging or unnecessarily improving the system. The original constrained allocation problem is simplified by converting it to an unconstrained one via the use of Lagrange multiplier. A discretized dynamic programming algorithm is formulated for finding the optimal allocation policy. A typical optimal aeration capacity allocation policy and its corresponding dissolved oxygen sag profile for the illustrated numerical example is presented, and the relationship between the total available aeration capacity and Lagrange multiplier is also developed treating weighting factors as parameters.
Keywords:water quality  artificial aeration  optimization  dynamic programming
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号