首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unexpected control of soil carbon turnover by soil carbon concentration
Authors:Axel Don  Christian Rödenbeck  Gerd Gleixner
Institution:1. Thünen-Institute of Climate-Smart Agriculture, Bundesallee 50, 38116, Braunschweig, Germany
2. Max Planck Institute for Biogeochemistry, Hans Kn?ll Strasse 10, 07745, Jena, Germany
Abstract:Soils are a key component of the terrestrial carbon cycle as they contain the majority of terrestrial carbon. Soil microorganisms mainly control the accumulation and loss of this carbon. However, traditional concepts of soil carbon stabilisation failed so far to account for environmental and energetic constraints of microorganisms. Here, we demonstrate for the first time that these biological limitations might have the overall control on soil carbon stability. In a long-term experiment, we incubated 13C-labelled compost with natural soils at various soil carbon concentrations. Unexpectedly, we found that soil carbon turnover decreased with lower carbon concentration. We developed a conceptual model that explained these observations. In this model, two types of particles were submitted to random walk movement in the soil profile: soil organic matter substrate and microbial decomposers. Soil carbon turnover depended only on the likelihood of a decomposer particle to meet a substrate particle; in consequence, carbon turnover decreased with lower carbon concentration, like observed in the experiment. This conceptual model was able to simulate realistic depth profiles of soil carbon and soil carbon age. Our results, which are simply based on the application of a two-step kinetic, unmystify the stability of soil carbon and suggest that observations like high carbon ages in subsoil, stability of carbon in fallows and priming of soil carbon might be simply explained by the probability to be decomposed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号