首页 | 本学科首页   官方微博 | 高级检索  
     


Intersection AEB implementation strategies for left turn across path crashes
Authors:Ulrich Sander  Nils Lubbe  Sylvia Pietzsch
Affiliation:1. Veoneer Sweden AB, Research, V?rg?rda, Sweden;2. ulrich.sander@veoneer.com;4. Autoliv Development AB, Research, V?rg?rda, Sweden;5. Zenuity AB, Development, Gothenburg, Sweden
Abstract:Abstract

Objective: Left turn across path with traffic from the opposite direction (LTAP/OD) is the second most frequent car-to-car intersection crash type after straight crossing path (SCP) in Germany and the United States. Intersection automated emergency braking (AEB) for passenger cars can address these crashes.

This study investigates 2 implementation strategies of intersection AEB addressing LTAP/OD crashes: (1) only the turning car is equipped with an intersection AEB and (2) turning and straight-heading cars are equipped with an intersection AEB. For each strategy, the influence of a safety zone around the vehicles that should not be entered is evaluated in terms of accident avoidance, injury mitigation, and change in velocity (delta-V) of remaining accidents. Results are given as a function of market penetration.

Methods: A total of 372 LTAP/OD crashes from the time series precrash matrix (PCM), a subsample of the German In-Depth Accident Study (GIDAS), were resimulated in the PRediction of Accident Evolution by Diversification of Influence factors in COmputer simulation (PRAEDICO) simulation framework. A Kudlich-Slibar rigid-body impact model and an injury risk curve derived from GIDAS were used to predict remaining moderate to fatal (Maximum Abbreviated Injury Scale [MAIS] 2?+?F) injuries among car occupants.

Results: With a safety zone of 0.2 m, when the turning vehicle only was equipped with an intersection AEB, 59% of the crashes were avoided at a 100% market penetration. With both vehicles equipped the percentage increased to 77%. MAIS 2?+?F injured occupants were reduced by 60 and 76%, respectively. Considering both the turning and the straight-heading vehicles, the delta-V decreased strongly with market penetration in remaining left-side impacts but only slightly in remaining frontal and right-side impacts. Eliminating the safety zone substantially decreases effectiveness in all conditions.

Conclusions: Implementation strategy and safety zone definition strongly influence the real-life performance of intersection AEB. AEB should be applied not only for the turning vehicle but also for the straight-going vehicle to benefit from the full potential. Situationally appropriate safety zone definitions, in line with human hazard perception, need more attention and are a key to balance true positive and false positive performance. Remaining delta-V does not decrease broadly; hence, there is no evidence that future LTAP/OD crashes will be generally of lower severity. This highlights the need for continuous development of in-crash protection.
Keywords:Left turn across path  intersection  AEB  crash avoidance  injury mitigation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号