首页 | 本学科首页   官方微博 | 高级检索  
     


Electrokinetic ion transport through unsaturated soil: 2. Application to a heterogeneous field site
Authors:Mattson Earl D  Bowman Robert S  Lindgren Eric R
Affiliation:Geoscience Research Department, Idaho National Engineering and Environmental Laboratory, Idaho Falls 83415-2107, USA. matted@inel.gov
Abstract:Results of a field demonstration of electrokinetic transport of acetate through an unsaturated heterogeneous soil are compared to numerical modeling predictions. The numerical model was based on the groundwater flow and transport codes MODFLOW and MT3D modified to account for electrically induced ion transport. The 6-month field demonstration was conducted in an unsaturated layered soil profile where the soil moisture content ranged from 4% to 28% (m3 m(-3)). Specially designed ceramic-cased electrodes maintained a steady-state moisture content and electric potential field between the electrodes during the field demonstration. Acetate, a byproduct of acetic acid neutralization of the cathode electrolysis reaction, was transported from the cathode to the anode by electromigration. Field demonstration results indicated preferential transport of acetate through soil layers exhibiting higher moisture content/electrical conductivity. These field transport results agree with theoretical predictions that electromigration velocity is proportional to a power function of the effective moisture content. A numerical model using a homogeneous moisture content/electrical conductivity domain did not adequately predict the acetate field results. Numerical model predictions using a three-layer electrical conductivity/moisture content profile agreed qualitatively with the observed acetate distribution. These results suggest that field heterogeneities must be incorporated into electrokinetic models to predict ion transport at the field-scale.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号