首页 | 本学科首页   官方微博 | 高级检索  
     

油指纹多元统计分析在鉴别地表水石油类污染来源中的应用研究
引用本文:张乐,宋小燕,吴哲健,汤宇烽,孙明智,叶朝霞,王家德,刘锐. 油指纹多元统计分析在鉴别地表水石油类污染来源中的应用研究[J]. 环境科学学报, 2019, 39(9): 3018-3024
作者姓名:张乐  宋小燕  吴哲健  汤宇烽  孙明智  叶朝霞  王家德  刘锐
作者单位:浙江工业大学环境学院,杭州310032;浙江清华长三角研究院生态环境研究所,浙江省水质科学与重点实验室,嘉兴314006;浙江清华长三角研究院生态环境研究所,浙江省水质科学与重点实验室,嘉兴314006;嘉兴市环境保护监测站,嘉兴,314000;浙江工业大学环境学院,杭州,310032
基金项目:嘉兴市环境保护局地表水石油类污染调查项目(千秋-JXQQGK (2017)第22号)
摘    要:采用油指纹多元统计方法,对嘉兴市杭州塘和长山河水系沿岸加油站9个不同来源的轻质柴油进行了分类鉴别,并考察了风化的影响.结果表明:仅基于GC-MS谱图,很难对不同轻质柴油的来源进行鉴别;但基于GC-MS谱图,提取正构烷烃及多环芳烃特征比值,进一步采用多元统计方法,可以对不同来源的轻质柴油进行区分.考虑实际水环境中油污染物会风化,向河水中投入两种轻质柴油,考察了不同初始浓度和不同风化时间下的油指纹变化,发现油污染物初始浓度为0.5 mg·L~(-1)时,所有特征比值在风化过程中均极不稳定,无法用于分类鉴别;油污染物初始浓度达到1.0 mg·L~(-1)及以上时,特征比值C_(17)/Pr、C_(18)/Ph在风化5 d内可用作油指纹的鉴别指标,5 d后无法用于鉴别;特征比值Pr/Ph、(C_(19)+C_(20))/(C_(21)+C_(22))、CPI受风化时间影响小,始终可以作为油指纹鉴别的特征指标.

关 键 词:地表水  石油类  油指纹  正构烷烃  多环芳烃  多元统计方法
收稿时间:2019-02-21
修稿时间:2019-03-28

Identifying the origin of petroleum pollutants in surface water through oil fingerprint and multivariate statistical analysis
ZHANG Le,SONG Xiaoyan,WU Zhejian,TANG Yufeng,SUN Mingzhi,YE Zhaoxi,WANG Jiade and LIU Rui. Identifying the origin of petroleum pollutants in surface water through oil fingerprint and multivariate statistical analysis[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3018-3024
Authors:ZHANG Le  SONG Xiaoyan  WU Zhejian  TANG Yufeng  SUN Mingzhi  YE Zhaoxi  WANG Jiade  LIU Rui
Affiliation:1. College of Environment, Zhejiang University of Technology, Hangzhou 310032;2. Department of Environment, Yangtze Delta Region Institute of Tsinghua University in Zhejiang, Zhejiang Provincial Key Laboratory of Water Science and Technology, Jiaxing 314006,Department of Environment, Yangtze Delta Region Institute of Tsinghua University in Zhejiang, Zhejiang Provincial Key Laboratory of Water Science and Technology, Jiaxing 314006,Department of Environment, Yangtze Delta Region Institute of Tsinghua University in Zhejiang, Zhejiang Provincial Key Laboratory of Water Science and Technology, Jiaxing 314006,Jiaxing Environmental Protection Monitoring Station, Jiaxing 314000,Jiaxing Environmental Protection Monitoring Station, Jiaxing 314000,Jiaxing Environmental Protection Monitoring Station, Jiaxing 314000,College of Environment, Zhejiang University of Technology, Hangzhou 310032 and Department of Environment, Yangtze Delta Region Institute of Tsinghua University in Zhejiang, Zhejiang Provincial Key Laboratory of Water Science and Technology, Jiaxing 314006
Abstract:Oil fingerprint and multivariate statistical analysis were used to identify the light diesel oils from nine waterborne bunker petrol stations along the Hangzhou Tang River and Changshan River in Jiaxing City, and the influence of weathering on the identification was investigated. The results show that the origin of the diesel oils was not identifiable based on the GC-MS spectra alone, but was successfully identified through calculating the characteristic ratios of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) based on the GC-MS spectra and the subsequent multivariate statistical analysis. River water samples were dosed with two kinds of light diesel to investigate the influence of weathering on the oil fingerprints at different initial concentrations, and weathering time. With the initial oil concentration of 0.5 mg·L-1, all characteristic ratios were unstable and unfeasible for the identification of oil origin. With the initial oil concentrations of 1.0 mg·L-1 or higher, however, the characteristic ratios of C17/Pr and C18/Ph could be used for identifying oil origin when the weathering was within five days, while the characteristic ratios of Pr/Ph, (C19+C20)/(C21+C22), and CPI were less affected and could be used for oil fingerprint identification regardless of the weathering time.
Keywords:river water  waterborne bunker petrol stations  oil fingerprint  n-alkanes  polycyclic aromatic hydrocarbons  multivariate statistical method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号