首页 | 本学科首页   官方微博 | 高级检索  
     检索      

金盆水库沉积物磷的来源及分布特征
引用本文:毛雪静,黄廷林,李楠,徐金兰,苏露,吕晓龙,邓立凡.金盆水库沉积物磷的来源及分布特征[J].环境科学,2019,40(6):2738-2744.
作者姓名:毛雪静  黄廷林  李楠  徐金兰  苏露  吕晓龙  邓立凡
作者单位:西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055;西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055;西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055;西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055;西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055;西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055;西安建筑科技大学陕西省环境工程重点实验室,西安710055;西安建筑科技大学西北水资源与环境生态教育部重点实验室,西安710055
基金项目:国家自然科学基金项目(51478378)
摘    要:为探究分层型水源水库沉积物中磷的来源与分布特征,以西安金盆水库为对象,针对2017年3~11月金盆水库水体、沉降颗粒及沉积物柱状样品总磷(TP)含量及形态分布特征进行研究.结果表明,金盆水库主库区表层沉积物总磷含量及形态分布受水体颗粒磷(PP)沉降作用明显,相关系数r~2=0. 877 5;同时表层沉积物总磷含量还受到沉积物内部生物地球化学的共同作用. 6~8月金盆水库水体藻类剧烈繁殖演替,繁殖过程中大量失去活性、死亡的藻类不断向底部水体沉积,形成以藻类等颗粒磷为主导的内源污染,沉降颗粒总磷含量达(753. 51±17. 11) mg·kg~(-1),表层沉积物总磷含量随之增加,以铁铝结合态非活性磷(NaOH-nrP)为主; 9~11月进入汛期,径流水体携带大量泥沙等负荷较大的污染物汇入水库,使得水体颗粒磷浓度相应增大,然而由于单位质量泥沙中总磷含量占比较小,导致径流过程中表层沉积物总磷含量逐渐降低,泥沙径流过程中颗粒磷以无机态的钙磷(Ca-P)和残渣态磷(rest-P)为主,二者约占沉积物总磷(TP) 55. 8%~66. 2%,受颗粒沉降影响相对较大.活性磷(SRP)、铁锰螯合态磷(BD-P)和铁铝结合态活性磷(NaOH-srP)这3种形态磷较活跃,在环境条件的变化(主要是氧化还原条件)下发生一系列迁移转化,受沉积物内部生物地球生物化学过程作用明显.

关 键 词:金盆水库  沉积物  磷形态  化学连续提取  沉降速率
收稿时间:2018/10/27 0:00:00
修稿时间:2019/1/3 0:00:00

Sources and Distribution of Phosphorus in Sediments of the Jinpen Reservoir
MAO Xue-jing,HUANG Ting-lin,LI Nan,XU Jin-lan,SU Lu,L&#; Xiao-long and DENG Li-fan.Sources and Distribution of Phosphorus in Sediments of the Jinpen Reservoir[J].Chinese Journal of Environmental Science,2019,40(6):2738-2744.
Authors:MAO Xue-jing  HUANG Ting-lin  LI Nan  XU Jin-lan  SU Lu  L&#; Xiao-long and DENG Li-fan
Institution:Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China,Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China,Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China,Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China,Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China,Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China and Shanxi Key Laboratory of Environmental Engineering, Xi''an University of Architecture and Technology, Xi''an 710055, China;Key Laboratory of Northwest Water Resource, Ministry of Education, Xi''an University of Architecture and Technology, Xi''an 710055, China
Abstract:In order to explore the sources and distribution of phosphorus in sediments of a stratified water source reservoir, the total phosphorus (TP) content and distribution of phosphorus fractions in sedimentation particles and sediments of the Jinpen Reservoir of Xi''an were analyzed from March to November in 2017. The results showed that the TP content in the surface sediments of the Jinpen Reservoir was obviously affected by the deposition of particulate phosphorus (PP), and the correlation coefficient was 0.8775. Besides, this TP pool was also affected by the biogeochemistry of sediments. From June to August, algae in the Jinpen Reservoir propagated intensely, and a large number of dead algae were deposited on the bottom of the water body, which resulted in a type of endogenous pollution dominated by algae. The concentration of PP reached (753.51±17.11) mg·kg-1, and the content of TP increased, with NaOH-nrP as the main component. During the flood season of the Jinpen Reservoir from September to November, the runoff water carried a large amount of sediments with large pollutant loads, which resulted in increases of the concentration of PP in the water body. However, the TP content in the sediment per unit mass was relatively small. As a result, the TP content of surface sediments decreased, with inorganic Ca-P and rest-P as the main forms, which accounted for 55.8%-66.2% of the TP in sediment, and were influenced by particle sedimentation. The SRP, BD-P, and NaOH-srP, the most active fractions, underwent a series of transport and transformation processes under the changing environmental conditions (mainly redox conditions), and these forms were obviously affected by the biochemical processes in sediments and minimally affected by the sedimentation processes of the reservoir.
Keywords:Jinpen Reservoir  sediments  phosphorus forms  chemical sequential extraction  sedimentation rate
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号