首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Ag改性石墨相氮化碳(g-C3N4)可见光辅助活化过一硫酸盐降解罗丹明B
引用本文:赖树锋,梁锦芝,肖开棒,李富华,江学顶,许伟城,王海龙,陈忻,胡芸,梁小明.Ag改性石墨相氮化碳(g-C3N4)可见光辅助活化过一硫酸盐降解罗丹明B[J].环境科学学报,2021,41(5):1847-1858.
作者姓名:赖树锋  梁锦芝  肖开棒  李富华  江学顶  许伟城  王海龙  陈忻  胡芸  梁小明
作者单位:佛山科学技术学院交通与土木建筑学院, 佛山 528000;佛山科学技术学院环境与化学工程学院, 佛山 528000;华南理工大学环境与能源学院, 广州 510006;生态环境部华南环境科学研究所, 国家环境保护城市生态环境模拟与保护重点实验室, 广州 510655
基金项目:广东省自然科学基金(No.2018A030313734);广州市科技计划项目(No.201804020026)
摘    要:采用煅烧法和光还原法制备出具有高活性的Ag/g-C3N4催化剂,并将其应用于可见光下活化过一硫酸盐(PMS)降解罗丹明B(RhB)废水.系统研究了实际因素RhB浓度、催化剂投加量、PMS剂量、pH值和可溶性无机阴离子对RhB降解效果的影响.结果表明,RhB的降解率随着催化剂投加量、PMS浓度的增加而增大,随着初始RhB浓度的增加而减小.弱酸性条件有利于反应活化PMS降解RhB,而中性或碱性条件都会减缓催化反应的进行.Ag/g-C3N4-2/Vis/PMS催化体系30 min内对RhB的去除率最高可达93.2%,分别是Ag/g-C3N4/Vis和单独PMS催化体系的4.0和3.7倍.体系催化活性的提高归因于Ag的表面等离子共振效应及基于硫酸根自由基的高级氧化技术与光催化技术的协同作用.不同阴离子对催化反应的影响不同,溶液中的Cl-会对反应产生轻微的抑制作用,而H2PO4-和HCO3-的出现大大抑制了催化性能.催化剂具有良好的稳定性,5次循环后仍能在30 min之内降解77.4%的RhB.此外,捕获实验和ESR测试结果表明,Ag/g-C3N4-2/Vis/PMS催化体系中存在·O2-、h+1O2、SO4和·OH活性物种,并协同降解RhB污染物.

关 键 词:Ag/g-C3N4  过一硫酸盐  光催化  罗丹明B  协同作用
收稿时间:2020/8/24 0:00:00
修稿时间:2020/9/24 0:00:00

Visible light assisted peroxymonosulfate activation on Ag modified graphite phase carbon nitride (g-C3N4) for Rhodamine B degradation
LAI Shufeng,LIANG Jinzhi,XIAO Kaibang,LI Fuhu,JIANG Xueding,XU Weicheng,WANG Hailong,CHEN Xin,HU Yun,LIANG Xiaoming.Visible light assisted peroxymonosulfate activation on Ag modified graphite phase carbon nitride (g-C3N4) for Rhodamine B degradation[J].Acta Scientiae Circumstantiae,2021,41(5):1847-1858.
Authors:LAI Shufeng  LIANG Jinzhi  XIAO Kaibang  LI Fuhu  JIANG Xueding  XU Weicheng  WANG Hailong  CHEN Xin  HU Yun  LIANG Xiaoming
Institution:School of Transportation and Civil Engineering, Foshan University, Foshan 528000;School of Environmental and Chemical Engineering, Foshan University, Foshan 528000;School of Environment and Energy, South China University of Technology, Guangzhou 510006; State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655
Abstract:In this study, Ag/g-C3N4 catalysts (Ag/g-C3N4) with high activity were prepared by calcination and photoreduction process. The as-prepared catalysts were studied for the degradation of organic pollutant Rhodamine B (RhB), and were also used for peroxymonosulfate (PMS) activation in the presence and absence of visible light. The effects of RhB concentration, catalyst dosage, PMS concentration, pH value and soluble inorganic anions on RhB degradation were systematically investigated. The results showed that the degradation rate of RhB was positively correlated with catalyst dosage and PMS concentration, but negatively correlated with initial RhB concentration. The optimal pH for the reaction was achieved and weak acidic conditions could promote RhB degradation, while the neutral or basic conditions played negative effects on the reaction. The removal rate of RhB in Ag/g-C3N4-2/Vis/PMS catalyst system was 93.2% within 30 min, which was 4.0 and 3.7 times higher than that of Ag/g-C3N4/Vis and independent PMS catalysis system. The improvement of catalytic activity can be attributed to the surface plasmon resonance effect of Ag and the synergistic effect of advanced oxidation technology based on the sulfate radical and photocatalytic technology. Anions influence experiments showed that different anions played different effects on catalytic reaction. The influence of Cl- on the removal of RhB was insignificant, while H2PO4- and HCO3- seriously inhibited the degradation. Cycle experiments showed that Ag/g-C3N4-2 catalyst has good stability and 77.4% RhB can be removed within 30 min after 5 cycles. In addition, the capture experiments and ESR tests showed that different active species including ·O2-, h+, 1O2, SO4 and ·OH can be found in Ag/g-C3N4/Vis/PMS catalyst system, and synergistically degraded RhB pollutants.
Keywords:Ag/g-C3N4  peroxymonosulfate  photocatalysis  Rhodamine B  synergistic effect
点击此处可从《环境科学学报》浏览原始摘要信息
点击此处可从《环境科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号