基于卷积神经网络的煤泥水外溢检测算法 |
| |
作者姓名: | 张琦 吉日格勒 |
| |
作者单位: | 国能准能集团有限责任公司 |
| |
基金项目: | 国家自然科学基金资助(51208282); |
| |
摘 要: | 为解决工厂煤泥水外溢这一难题,提出一种实时监督煤泥水外溢的解决方案。首先,构建基于深度学习的煤泥水外溢视频检测模型,利用卷积神经网络(CNN)提取煤泥水监测图像特征;然后,将提取到的特征代入模型进行训练,通过微调方法,使准确率不断提升;最后,采用相关评价指标评估模型的性能。结果表明:采用基于CNN的煤泥水外溢检测模型相较于传统的检测算法,在各项评价指标上可提高15%以上;在煤泥水外溢的严重程度上也能做出精准判断,各项评价指标均达到90%以上,有助于降低煤泥水外溢状况发生。
|
关 键 词: | 卷积神经网络(CNN) 煤泥水外溢 视频检测 特征提取 评价指标 |
|
|