首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的安全标识分类算法研究
作者姓名:王瑶涵  宋泽阳  张利冬
作者单位:西安科技大学安全科学与工程学院
基金项目:国家自然科学基金资助(51804168);
摘    要:为解决安全标识数据集、安全标识特殊图形及复杂背景缺乏等问题,采用卷积神经网络(CNN)提取安全标识的特征,在VGG-16网络结构和CNN的基础上构建能够识别17种安全标识的VGG16-17模型。原始数据有816张,通过数据增强扩展数据集,得到4 708张图片,按照4∶1的比例将数据集划分为训练集和验证集。通过调节模型中部分参数,分析迭代次数和批量大小对模型识别分类效果的影响。结果表明:当迭代次数为20次、批量大小为32时,模型结果最理想,识别准确率为97.92%,相较于基于未经过数据增强数据集的改进模型的准确率提高19.39%,同时,改进模型相较于传统VGG16模型,识别准确率提高4.3%,证明模型改进和数据增强对图像识别能力的提高有一定帮助。

关 键 词:卷积神经网络(CNN)  安全标识  计算机视觉  图像识别  数据增强
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号