首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical investigation of flow erosion and flow induced displacement of gas well relief line
Institution:1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, China;2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China;3. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract:High-pressure particle-laden gas flow should be discharged through relief line of gas well timely to ensure safe test and exploitation. Erosion and vibration usually take place on the bend in relief lines, bringing a potential safety hazard to field operation. The majority of this paper investigates the factors affecting the erosion of bend and displacement of relief line in the downstream of bend using the computational fluid dynamics (CFD) methodology. A three-dimensional elbow pipe is selected as computational domain in this investigation. The kinematics and trajectory of discrete solid particles and liquid droplets are described by discrete phase model (DPM) while the hydrodynamic characteristics of continuous phase are obtained based on Reynolds-Averaged-Navier-Stokes (RANS) equations. An empirical erosion model is employed to predict the erosion rate of bend, and a fluid–structure interaction (FSI) model is adopted to calculate the displacement of relief line. The effects of types of multiphase flow (such as gas–solid two-phase flow and gas–liquid–solid three-phase flow), inlet flow rate and pipe diameter on erosion and displacement are discussed. The results show that large displacement and severe erosion present with large inlet flow rate in minor diameter pipe. The increase in liquid droplet content has less effect on flow erosion than that by the same increase in sand particle content.
Keywords:Erosion  Displacement  Bend  Relief line  Numerical simulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号