首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of hydrogen addition on propagation characteristics of premixed methane/air flames
Affiliation:1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China;2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China;1. The Collaborative Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo, 454003, Henan, PR China;2. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo 454003, Henan, PR China;1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China;2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China;3. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China;1. SKLTCS, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;2. Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Power Engineering, Chongqing University, Chongqing 400044, China;1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China;2. School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China;3. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
Abstract:An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.
Keywords:Hydrogen/methane  Premixed flame  Flame speed  Overpressure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号