首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand
Authors:Craw D
Institution:Geology Department and Environmental Science Programme, University of Otago, Leith Street, PO Box 56, Dunedin, New Zealand. dave.craw@stonebow.otago.ac.nz
Abstract:Eroded roots of hot spring systems in Northland, New Zealand consist of mineralised rocks containing sulfide minerals. Marcasite and cinnabar are the dominant sulfides with subordinate pyrite. Deep weathering and leached soil formation has occurred in a warm temperate to subtropical climate with up to 3 m/year rainfall. Decomposition of the iron sulfides in natural and anthropogenic rock exposures yields acid rock drainage with pH typically between 2 and 4, and locally down to pH 1. Soils and weathered rocks developed on basement greywacke have negligible acid neutralisation capacity. Natural rainforest soils have pH between 4 and 5 on unmineralised greywacke, and pH is as low as 3.5 in soils on mineralised rocks. Roads with aggregate made from mineralised rocks have pH near 3, and quarries from which the rock was extracted can have pH down to 1. Mineralised rocks are enriched in arsenic and mercury, both of which are environmentally available as solid solution impurities in iron sulfides and phosphate minerals. Base metals (Cu, Pb, Zn) are present at low levels in soils, at or below typical basement rock background. Decomposition of the iron sulfides releases the solid solution arsenic and mercury into the acid rock drainage solutions. Phosphate minerals release their impurities only under strongly acid conditions (pH<1). Arsenic and mercury are adsorbed on to iron oxyhydroxides in soils, concentrated in the C horizon, with up to 4000 ppm arsenic and 100 ppm mercury. Waters emanating from acid rock drainage areas have arsenic and mercury below drinking water limits. Leaching experiments and theoretical predictions indicate that both arsenic and mercury are least mobile in acid soils, at pH of c. 3-4. This optimum pH range for fixation of arsenic and mercury on iron oxyhydroxides in soils is similar to natural pH at the field site of this study. However, neutralisation of acid soils developed on mineralised rocks is likely to decrease adsorption and enhance mobility of arsenic and mercury. Hence, development of farmland by clearing forest and adding agricultural lime may mobilise arsenic and mercury from underlying soils on mineralised rocks. In addition, arsenic and mercury release into runoff water will be enhanced where sediment is washed off mineralised road aggregate (pH 3) on to farm land (pH>6). The naturally acid forest soils, or even lower pH of natural acid rock drainage, are the most desirable environmental conditions to restrict dissolution of arsenic and mercury from soils. This approach is only valid where mineralised soils have low base metal concentrations.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号