首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics and corrosion products of aqueous nitrate reduction by iron powderwithout reaction conditions control
Authors:FAN Xiaomeng  GUAN Xiaohong  MA Jun  AI Hengyu
Affiliation:1. School of Municipal and Environmental Engineering,Harbin Institute of Technology,Harbin 150090,China
2. College of Chemical and Environmental Engineering,Harbin University of Science and Technology,Harbin 150080,China
Abstract:Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic conditions with invariable pH that was unsuitable for practical application. Without reaction conditions (dissolved oxygen or reaction pH) control, this work aimed at subjecting the kinetics of denitrification by microscale Fe0 (160–200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface. Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant. The reduction rate of nitrate increased with increasing Fe0 dosage. The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage. Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration. The analyses of X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5. The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.
Keywords:kinetics   nitrate reduction   zero-valent iron   corrosion products   pH
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号