首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of potassium inhibition on the thermophilic anaerobic digestion of swine waste.
Authors:Ye Chen  Jay J Cheng
Affiliation:Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695-7625, USA.
Abstract:The inhibition effects of high potassium concentration on thermophilic anaerobic digestion of swine waste were studied. A continuous stirred tank reactor (CSTR), operated at a hydraulic retention time of 10 days and chemical oxygen demand loading of 7.2 to 7.5 g/L/d, was used to digest swine waste and cultivate thermophilic anaerobic microorganisms. To evaluate the toxicity of potassium, batch inhibition tests were also conducted. Without acclimation to potassium, the inhibition threshold beyond which methane production decreased significantly was 3 g K+/L. Volatile fatty acids accumulation was observed during the decline of methane production. Propionic acid was the dominant fatty acid, indicating that propionic acid utilizers were more sensitive to potassium inhibition than acetoclastic methanogens. To test the effect of acclimation on potassium inhibition, the potassium concentration in the CSTR was increased to 6 and 9 g K+/L. Acclimation to 6 g K+/L increased the tolerance of anaerobic inocula to potassium inhibition without significantly reducing the methanogenic activity. The inhibition threshold was increased from 3 g K+/L for unacclimated inocula, to 6 g K+/L for inocula acclimated to 6 g/L of potassium. Acclimation of inocula to 9 g/L potassium further increased the inhibition threshold to 7.5 g K+/L. However, the overall methanogenic activity in the last case was lower than that of unacclimated and 6 g K+/L acclimated inocula.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号