首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SO2 oxidation in an entraining cloud model with explicit microphysics
Institution:1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;2. Institute of Environmental and Climate Research, Jinan University, Guangzhou 510632, China;3. Shenzhen Academy of Environmental Sciences, Shenzhen 518022, China
Abstract:A model of the chemical evolution of the droplets in a hill-cap cloud is presented. The chemistry of individual droplets forming on cloud condensation nuclei of differing size and chemical composition is considered, and the take-up of species from the gas phase by the droplets is treated explicity for the droplet population. Oxidation of S(IV) dissolved in cloud droplets is assumed to be dominated by hydrogen peroxide and ozone.Hydrogen peroxide is normally found to be the dominant oxidant for the oxidation of sulphur dioxide (except in the presence of substantial concentrations of ammonia gas, which increases droplet pH and the contribution made by the oxidant ozone). The entrainment of hydrogen peroxide from above the cloud top increases the amount of sulphate produced in conditions where the reaction is otherwise oxidant limited by the availability hydrogen peroxide. These conditions occur when there are high concentrations of sulphur dioxide accompanied by low cloudwater pH values.Within droplets formed on sodium chloride aerosol, reduced levels of acidity lead to an increase in sulphate production as a result of an enhanced reaction between SO2 and the oxidant ozone. This results in an overall higher increase in cloudwater sulphate than would be expected assuming an even distribution of all reactants amongst the droplets. In addition, concentrations of the hydrogen sulphite ion predicted to occur in the cloudwater can be substantially in excess of those predicted from the bulk cloudwater pH. This is consistent with recent observations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号