首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Decolorization of synthetic Methyl Orange wastewater by electrocoagulation with periodic reversal of electrodes and optimization by RSM
Institution:1. School of Resource and Environmental Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China;2. Minerals and Materials Science & Technology Mawson Institute, Mawson Lakes Campus, South Australia 5095, Australia;1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China;2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China;1. Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA;2. Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA;1. Laboratoire de Traitement des Eaux Naturelles. Centre de Recherches et technologies des eaux, Technopole de Borj-Cédria, 8020 Soliman, Tunisia;2. Institut Supérieur des Sciences et Technologies de l’Environnement, Technopole de Borj-Cédria, Tunisia;3. Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS – Université de Lorraine, 1 rue Grandville, B.P. 20451, Nancy, France;1. Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey;2. University of Kocaeli, Department of Environmental Protection, 41275 Izmit, Kocaeli, Turkey;3. Department of Chemistry, Gebze Technical University, 41400 Gebze, Turkey;1. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería, Carrera 4 # 22-6. 1, Bogotá D.C., Colombia;2. Universidad Libre, Facultad de Ingeniería, Carrera 70 53-40., Bogotá D.C., Colombia
Abstract:Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm?1, cell voltage (U) 4.4 V, current density (j) 185 mA cm?2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L?1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)?1, 4.1 ± 0.2 kg(Al) kg(MOr)?1 and 17.2 ± 0.9 kg(sludge) kg(MOr)?1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10?4 Ω cm?2 min?1 and 0.29 mA cm?2 min?1, respectively, as compared to 7.72 × 10?4 Ω cm?2 min?1 and 0.79 mA cm?2 min?1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min?1 in the traditional electrocoagulation process to 0.183 min?1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.
Keywords:Electrocoagulation  Periodic reversal of electrodes  Response Surface Methodology  Decolorization  Methyl Orange wastewater  Electrolysis efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号