首页 | 本学科首页   官方微博 | 高级检索  
     


Upland Controls on the Hydrological Functioning of Riparian Zones in Glacial Till Valleys of the Midwest1
Authors:P. Vidon  A. P. Smith
Abstract:Abstract: Identifying relationships between landscape hydrogeological setting, riparian hydrological functioning and riparian zone sensitivity to climate and water quality changes is critical in order to best use riparian zones as best management practices in the future. In this study, we investigate water table dynamics, water flow path and the relative importance of precipitation, deep ground water (DG) and seep water as sources of water to a riparian zone in a deeply incised glacial till valley of the Midwest. Data indicate that water table fluctuations are strongly influenced by soil texture and to a lesser extent by upland sediment stratigraphy producing seeps near the slope bottom. The occurrence of till in the upland and at 1.7‐2 m in the riparian zone contributes to maintaining flow parallel to the ground surface at this site. Lateral ground‐water fluxes at this site with a steep topography in the upland (16%) and loam soil near the slope bottom are small (<10 l/d/m stream length) and intermittent. A shift in flow path from a lateral direction to a down valley direction is observed in the summer despite the steep concave topography and the occurrence of seeps at the slope bottom. Principal component and discriminant analysis indicate that riparian water is most similar to seep water throughout the year and that DG originating from imbedded sand and gravel layers in the lower till unit is not a major source of water to riparian zones in this setting. Water quality data and the dependence of the riparian zone for recharge on seep water suggest that sites in this setting may be highly sensitive to changes in precipitation and water quality in the upland in the future. A conceptual framework describing the hydrological functioning of riparian zones on this setting is presented to generalize the finding of this study.
Keywords:riparian zone  hydrology  climate change  water quality  water sources  flow path
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号