首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Light-dependent magnetic compass in Iberian green frog tadpoles
Authors:Francisco Javier Diego-Rasilla  Rosa Milagros Luengo  John B Phillips
Institution:1. Departamento de Biología Animal, Universidad de Salamanca, Campus Miguel de Unamuno, Edificio de Farmacia 5a planta, 37007, Salamanca, Spain
2. Gabinete de Iniciativas Socioculturales y de Formación S.L., Salamanca, Spain
3. Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
Abstract:Here, we provide evidence for a wavelength-dependent effect of light on magnetic compass orientation in Pelophylax perezi (order Anura), similar to that observed in Rana catesbeiana (order Anura) and Notophthalmus viridescens (order Urodela), and confirm for the first time in an anuran amphibian that a 90° shift in the direction of magnetic compass orientation under long-wavelength light (≥500 nm) is due to a direct effect of light on the underlying magnetoreception mechanism. Although magnetic compass orientation in other animals (e.g., birds and some insects) has been shown to be influenced by the wavelength and/or intensity of light, these two amphibian orders are the only taxa for which there is direct evidence that the magnetic compass is light-dependent. The remarkable similarities in the light-dependent magnetic compasses of anurans and urodeles, which have evolved as separate clades for at least 250 million years, suggest that the light-dependent magnetoreception mechanism is likely to have evolved in the common ancestor of the Lissamphibia (Early Permian, ~294 million years) and, possibly, much earlier. Also, we discuss a number of similarities between the functional properties of the light-dependent magnetic compass in amphibians and blue light-dependent responses to magnetic stimuli in Drosophila melanogaster, which suggest that the wavelength-dependent 90° shift in amphibians may be due to light activation of different redox forms of a cryptochrome photopigment. Finally, we relate these findings to earlier studies showing that the pineal organ of newts is the site of the light-dependent magnetic compass and recent neurophysiological evidence showing magnetic field sensitivity in the frog frontal organ (an outgrowth of the pineal).
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号