首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system
Authors:David Daudin  Jorge Sierra  
Institution:aINRA, UR135, Agropédoclimatique de la zone Caraïbe, Petit-Bourg, F-97170 Guadeloupe, France
Abstract:Nitrogen (N) transfer from leguminous trees can be a major N source for the associated crop in low-input agroforestry systems. The aim of this study was to identify the main climatic and soil factors controlling N transfer from the leguminous tree Gliricidia sepium (Jacq.) Walp to the associated grass Dichanthium aristatum (Poir.) C.E. Hubb, in a 16-year-old tropical agroforestry system. Nitrogen transfer was estimated using the natural 15N abundance method. Before tree pruning, total N transfer represented 57% of the N uptake of the grass, including 31% coming from N2 fixation. The spatial variation induced by the tree was well described by soil organic N content (ON). In this system, ON is an index of soil available N as well as of tree root density. Rainfall (R) and evapotranspiration (ETP) were the main climatic factors controlling N transfer. Multiple regression analysis indicated that R, ETP and ON explained 79% of the temporal and spatial variation of N transfer. Transferred N cannot be estimated after pruning because of the change in the isotopic signature of the soil N source. This was related to N release from root turnover. The results suggest that grass showed a preferential uptake of N coming from the tree, which could be due to a lower energy cost compared to obtaining absorbed N from the clayey soil used in this work.
Keywords:Agroforestry  Multiple regression analysis  Natural 15N abundance  Nitrogen transfer  Vertisol  Weather conditions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号