首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析与遗传优化BP神经网络的风电场短期功率预测研究
引用本文:张泽龙,钱勇,刘华兵. 基于主成分分析与遗传优化BP神经网络的风电场短期功率预测研究[J]. 防灾减灾工程学报, 2019, 0(6): 1-6
作者姓名:张泽龙  钱勇  刘华兵
作者单位:国网宁夏电力有限公司经济技术研究院,宁夏 银川 750001;国网宁夏电力有限公司电力科学研究院,宁夏 银川 750011;中国科学院大学,北京 100039
摘    要:为降低风电场弃风率及对电网稳定性影响,对风电场短期功率进行准确预测显得十分重要。针对传统BP神经网络泛化能力差、网络收敛速度慢等问题,建立了一种基于主成分分析与遗传优化BP神经网络相结合的风电场短期功率预测模型。首先,利用主成分分析法对风电场原始气象数据进行分析,将得到的独立变量作为BP神经网络的输入;然后利用遗传算法确定了神经网络的最优初始权值和阈值的大致范围,并用L-M算法对BP网络权值和阈值进行细化训练;最后,利用中国北方某风电场实际运行数据进行验证,结果表明,所建立的预测模型合理有效,不仅可以加快BP神经网络收敛速度,减少预测误差,还可以提高风电场短期输出功率的预测精度,具有一定的工程应用价值。

关 键 词:主成分分析;遗传算法;BP神经网络;风电场功率;短期预测

Research on shortterm power forecasting of wind farm based on principal component analysis and genetic optimization of BP neural network
ZHANG Zelong,QIAN Yong,LIU Huabing. Research on shortterm power forecasting of wind farm based on principal component analysis and genetic optimization of BP neural network[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 0(6): 1-6
Authors:ZHANG Zelong  QIAN Yong  LIU Huabing
Affiliation:State Grid Ningxia Electric Power Eco-Tech Research Institute, Yinchuan Ningxia 750001 , China;State Grid Ningxia Electric Power Research Institute, Yinchuan Ningxia, 750011 , China; University of Chinese Academy of Sciences,Beijing 100039 , China
Abstract:In order to reduce the wind abandonment rate of wind farms and its impact on the stability of power grid, it is very important to predict the shortterm power of wind farms accurately. In view of the poor generalization ability and slow convergence speed of the traditional BP neural network, a shortterm power prediction model of wind farm based on the combination of principal component analysis and genetic optimization BP neural network is established. Firstly, principal component analysis is used to analyze the original meteorological data of wind farm, and the independent variables are used as the input of BP neural network; Then, genetic algorithm is used to determine the optimal initial weight and threshold range of neural network, and L-M algorithm is used to refine the weight and threshold of BP network; Finally, the actual operation data of a wind farm in northern China are used to verify the model. The results show that the model is reasonable and effective. It can not only accelerate the convergence speed of BP neural network, reduce the prediction error, but also improve the prediction accuracy of the shortterm output power of the wind farm, which has a certain engineering application value.
Keywords:
点击此处可从《防灾减灾工程学报》浏览原始摘要信息
点击此处可从《防灾减灾工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号