首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley
Authors:Gerard W. Wall  Richard L. GarciaFrank Wechsung  Bruce A. Kimball
Affiliation:a U.S. Arid-Land Agricultural Research Center, USDA-ARS, 21881 North Cardon Lane, Maricopa, AZ 85238, USA
b LI-COR BioScience Inc., P.O. Box 4425, Lincoln, NE 68504, USA
c Potsdam-Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam, Germany
Abstract:Atmospheric CO2 concentration (Ca) is rising, predicted to cause global warming, and alter precipitation patterns. During 1994, spring barley (Hordeum vulgare L. cv. Alexis) was grown in a strip-split-plot experimental design to determine the effects that the main plot Ca treatments [A: Ambient at 370 μmol (CO2) mol−1; E: Enriched with free-air CO2 enrichment (FACE) at ∼550 μmol (CO2) mol−1] had on several gas exchange properties of fully expanded sunlit primary leaves. The interacting strip-split-plot irrigation treatments were Dry or Wet [50% (D) or 100% (W) replacement of potential evapotranspiration] at ample nitrogen (261 kg N ha−1) and phosphorous (29 kg P ha−1) fertility. Elevated Ca facilitated drought avoidance by reducing stomatal conductance (gs) by 34% that conserved water and enabled stomata to remain open for a longer period into a drought. This resulted in a 28% reduction in drought-induced midafternoon depression in net assimilation rate (A). Elevated Ca increased A by 37% under Dry and 23% under Wet. Any reduction in A under Wet conditions occurred because of nonstomatal limitations, whereas under Dry it occurred because of stomatal limitations. Elevated Ca increased the diurnal integral of A (A′) that resulted in an increase in the seasonal-long integral of A′ (A″) for barley leaves by 12% (P = 0.14) under both Dry and Wet - 650, 730, 905 and 1020 ± 65 g (C) m−2 y−1 for AD, ED, AW and EW treatments, respectively. Elevated Ca increased season-long average dry weight (DWS; crown, shoots) by 14% (P = 0.02), whereas deficit irrigation reduced DWS by 7% (P = 0.06), although these values may have been affected by a short but severe pea aphid [Acyrthosiphon pisum (Harris)] infestation. Hence, an elevated-Ca-based improvement in gas exchange properties enhanced growth of a barley crop.
Keywords:A, Ambient Ca treatment   A, instantaneous leaf net assimilation rate [μmol (CO2) m&minus    s&minus  1]   Amax, daily maximum leaf net assimilation rate [μmol (CO2) m&minus    s&minus  1]   AN, season-long relative mean leaf net assimilation rate normalized between 0 and 1 scale (i.e., AN     A/Amax, dimensionless)   A&prime  , daily integral of net leaf carbon accumulation [g (C) m&minus    d&minus  1]   A&Prime  , seasonal integral of net leaf carbon accumulation [g (C) m&minus    y&minus  1]   AD, Ambient-Dry treatment   ANOVA, analysis of variance effects (i.e., C, D, I, S, T)   AW, Ambient-Wet treatment   df1, first degrees of freedom for F-statistic   df2, second degrees of freedom for F-statistic   C, carbon dioxide effect in ANOVA   Ca, atmospheric CO2 concentration [μmol (CO2  mol&minus  1]   Ci, intercellular CO2 concentration [μmol (CO2) mol&minus  1]   Ci/Ca, ratio of Ci to Ca (dimensionless)   D, Dry irrigation treatment   D, soil dehydration cycle effect in ANOVA   DAE, day after 50% emergence   DWG, dry weight of grain for barley (g   plant&minus  1)   DWS, dry weight of shoot and crown tissue for barley (g   plant&minus  1)   DWS,B:W, percentage change in dry weight between barley and wheat (%)   DWS,W, dry weight of shoot and crown tissue for wheat (g   plant&minus  1)   E, Enriched Ca treatment   E, leaf transpiration rate [mmol (H2O) m&minus    s&minus  1]   ED, Enriched-Dry treatment   EW, Enriched-Wet treatment   ea, atmospheric water vapor pressure at Ta (Pa)   e*, atmospheric saturation water vapor pressure at Ta (Pa)   ea,VPD, atmospheric water vapor pressure deficit (i.e., ea,VPD     e*   &minus     ea) at Ta (Pa)   F, F-statistic   FACE, free-air-CO2-enrichment   gs, stomatal conductance to water vapor [mol (H2O) m&minus    s&minus  1]   I, irrigation effect in ANOVA   IWUE (A/gs), intrinsic water use efficiency [μmol (CO2) mol (H2O)&minus  1]   PPFD, photosynthetic photon flux density [μmol (photons) m&minus    s&minus  1]   Pα, probability of a greater F-statistic by chance   S, species effect in ANOVA comparing average season-long dry weight response of barley to wheat   SR, daily total global solar radiation (MJ   m&minus    d&minus  1)   SRi, instantaneous total global solar radiation (MJ   m&minus    h&minus  1)   T, time of day [midmorning (MM: 2.5   h prior to solar noon), midday (MD: solar noon), and midafternoon (MA: 2.5   h after solar noon)] effect in ANOVA   TDR, time domain reflectometry   Ta, ambient air temperature inside cuvette (°  C)   Tl, leaf temperature inside cuvette (°  C)   Ta,max, maximum Ta  C)   Ta,min, minimum Ta  C)   TS, soil temperature (°  C)   TS,max, maximum TS  C)   TS,min, minimum TS  C)   ΔT, leaf minus air temperature inside cuvette (°  C)   ua,avg, average annual daily wind speed (m   s&minus  1) at 2-m height   W, Wet irrigation treatment   WUE (A/E), water use efficiency [μmol (CO2) mmol (H2O)&minus  1]   ΨM, soil matric potential (MPa)   θS, volumetric soil-water content (m3   m&minus  3)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号