首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simultaneous transport of parent and daughter compounds in aquifers with linear first-order sorption kinetics
Authors:FT Lindstrom  L Boersma
Abstract:In soils, daughter compounds may be generated from a parent compound by microbial metabolism, chemical reactions, radioactive decay, or other mechanisms. These daughter compounds are also acted upon by soil physical, chemical and biological processes. A system often referred to as a cascade or chain of compounds system results. While a great deal of attention has been given to this problem with the linear equilibrium assumption applied uniformly to all transport and reacting compounds, little attention has been given to the simultaneous transport and fate of a parent-daughter chain with a first-order rate assumed for the adsorption-desorption kinetics of each compound and with the soil partitioned into three sorption classes.A general one-dimensional cascade or chain model for the simultaneous transport of parent and daughter compounds in sorbing, homogeneous, water table aquifers is presented. The model is based on an advective-dispersive mass accounting formulation for both compounds and includes: (a) first-order rate of conversion of parent to daughter; (2) first-order rates of loss of either parent or daughter or both due to metabolism, chemical reaction and/or irreversible processes; (3) partitioning of the aquifer material into three sorption classes, namely mildly sorbing, strongly sorbing and organic matter; (4) linear first-order kinetic rules for adsorption and desorption operating on each of the sorbing soil fractions for each compound; (5) constantly emitting sources of rectangular shape of parent compound; and (6) mass accounting boundary conditions; and a tailorable initial distribution on 0, ∞). Mathematical analysis yields a coupled, linear system of equations including two transport and fate equations, initial and boundary data, and six kinetic rules, namely three each for parent and daughter compound. A numerical scheme for solving the system of equations was developed using readily available procedures since analytical solutions could not be found. Solutions for scenarios based on leaking underground sources are presented.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号