首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The study of operating variables in soil washing with EDTA   总被引:7,自引:0,他引:7  
This study discusses the operating variables for removal of metals from soils using EDTA, including the type of EDTA, reaction time, solution pH, dose, temperature, agitation, ultrasound and number of extractions. For As, Cd, Cu, Pb and Zn, the removal efficiency order was: H4-EDTA > Na2EDTA > (NH4)2EDTA. At low EDTA concentrations the removal increased progressively with increasing dose while above 0.4 mmol/g only small increases in extraction efficiency were observed. EDTA induced a two-step process including a rapid desorption within the first hour, and a gradual release in the following hours. The extraction efficiency of metals decreased with increasing pH in the range of 2-10. Consecutive extractions using low concentrations were more effective than a single extraction with concentrated EDTA if the same dose of EDTA was used.  相似文献   

2.
改性沸石吸附低浓度氨氮废水及其脱附的研究   总被引:4,自引:2,他引:2  
采用氯化钠溶液对浙江某地天然沸石改性,以低浓度氨氮废水为处理对象,比较了天然沸石和改性沸石的吸附等温线、吸附动力学和动态吸附,并进行了改性沸石的动态脱附研究.结果表明,沸石的平衡吸附量随着平衡浓度的增大而增大;Freundlich方程比Langmuir方程更好地描述沸石吸附低浓度氨氮废水的行为,改性沸石比天然沸石具有更...  相似文献   

3.
In this study, magnetic polydivinylbenzene latex particles MPDVB with a core-shell structure were tested for the removal of bisphenol A (BPA), copper Cu(II), lead Pb(II), and zinc Zn(II) from aqueous solutions by a batch-adsorption technique. The effect of different parameters, such as initial concentration of pollutant, contact time, adsorbent dose, and initial pH solution on the adsorption of the different adsorbates considered was investigated. The adsorption of BPA, Cu(II), Pb(II), and Zn(II) was found to be fast, and the equilibrium was achieved within 30 min. The pH 5–5.5 was found to be the most suitable pH for metal removal. The presence of electrolytes and their increasing concentration reduced the metal adsorption capacity of the adsorbent. Whereas, the optimal pH for BPA adsorption was found 7, both hydrogen bonds and π–π interaction were thought responsible for the adsorption of BPA on MPDVB. The adsorption kinetics of BPA, Cu(II), Pb(II), and Zn(II) were found to follow a pseudo-second-order kinetic model. Equilibrium data for BPA, Cu(II), Pb(II), and Zn(II) adsorption were fitted well by the Langmuir isotherm model. Furthermore, the desorption and regeneration studies have proven that MPDVB can be employed repeatedly without impacting its adsorption capacity.  相似文献   

4.
Spent sorbents in water treatment processes have potential risks to the environment if released without proper treatment. The aim of this work was to investigate the potential regeneration of commercially prepared nano-TiO2 (anatase) for the removal of Pb (II), Cu (II), and Zn (II) by pH 2 and ethylenediaminetetraacetic acid (EDTA) solutions. The percent of metal adsorption/desorption decreased with the increasing number of regeneration cycles, and the extent of decrease varied for each metal. Competitive effects were observed for the adsorption/desorption of different metals when the nano-TiO2 was regenerated by EDTA solutions. Nano-TiO2 was able to treat simulated metal polluted water with greater than 94 % adsorption and greater than 92 % desorption after four cycles of regeneration using pH 2 solution. These results demonstrated that nano-TiO2 can be regenerated and reused using pH 2 solution compared to an EDTA solution for aquatic metal removal, which makes nanosorbents promising and economically and environmentally more attractive in the application of water purification.  相似文献   

5.
以表面活性剂十二烷基硫酸钠(SDS)对沸石进行改性,改性后的沸石对结晶紫溶液进行吸附,以紫外可见分光光度计分析最佳吸附条件。实验结果表明,在30℃,SDS改性沸石投入量为0.25 g;吸附平衡时间为1 h;pH为8的条件下,对含50 mg/L结晶紫染料的去除率可达到92.6%,吸附量达到4.63 mg/g。SDS改性沸石吸附结晶紫的等温吸附曲线与Henry型和Freundlich型均拟合较好。热力学参数计算结果表明,吸附符合自发吸热过程。  相似文献   

6.
This paper investigates the effects of zeolite particle size, zeolite/ solution ratio and stirring time on the performance of zeolites from Dogantepe in removing Cu(II) from aqueous solution to establish optimum operating conditions. The results indicated that the size of the zeolite samples, the concentration of Cu(II) and the zeolite/solution ratio affected the removal efficiencies, whilst the stirring time was found to have no significant effect on the removal efficiencies. The equivalent numbers of sodium, magnesium, calcium and potassium ions passed into the Cu(II) solution were found to be 1.196, 0.208, 0.117 and 0.009 meq/l, respectively, and the passing percentages of these ions were calculated to be 11.27, 2.45, 1.57 and 0.37%, respectively. The removal mechanism of Cu(II) with zeolite samples was mainly ion exchange with a fraction of approximately 65%. The maximum exchange capacities obtained by using Dogantepe zeolites, Yavu zeolites, and synthetic resin were found to be 9.2, 7.0 and 72.7 mg/g, respectively. However, in relatively low concentrations of Cu(II), the differences in the removal efficiencies or exchange capacities obtained for above different three materials were significantly decreased.  相似文献   

7.
SDS改性沸石吸附结晶紫   总被引:2,自引:0,他引:2  
以表面活性剂十二烷基硫酸钠(SDS)对沸石进行改性,改性后的沸石对结晶紫溶液进行吸附,以紫外可见分光光度计分析最佳吸附条件。实验结果表明,在30℃,SDS改性沸石投入量为0.25g;吸附平衡时间为1h;pH为8的条件下,对含50mg/L结晶紫染料的去除率可达到92.6%,吸附量达到4.63mg/g。SDS改性沸石吸附结晶紫的等温吸附曲线与Henry型和Freundlich型均拟合较好。热力学参数计算结果表明,吸附符合自发吸热过程。  相似文献   

8.
4A沸石分子筛处理中低浓度氨氮废水   总被引:2,自引:0,他引:2  
桂花  谭伟  李彬  白梅  杨敏  王红斌 《环境工程学报》2014,8(5):1944-1950
利用天然沸石、采用水热合成法制备4A沸石分子筛,用XRD和SEM进行了表征。通过考察吸附剂用量、pH、共存金属阳离子、吸附时间、氨氮废水初始浓度、温度对吸附性能的影响,结合动力学方程、吸附等温线、热力学函数等研究了吸附性能和机理。结果表明,当4 g/L的4A沸石分子筛在废水pH值为4~8的条件下对中低浓度氨氮吸附120min后,去除率可达88%;废水中共存单一金属阳离子(Pb2+、Cu2+、Ca2+和Mg2+)浓度大于100 mg/L时,对中低浓度的NH+4有强烈的竞争吸附;氨氮的吸附过程较好地符合准二级动力学方程、Freundlich模型,是一种混乱度增加、自发的放热过程。  相似文献   

9.

Cu(II) adsorption in continuous column using green adsorbents like peanut and almond shell was investigated. Fourier transform infrared (FTIR) spectroscopy, Brunaer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and Point of Zero charge (pHpzc) determination have been used for characterization of the adsorbents. Experiments were conducted at various operating conditions to calculate the adsorption capacity of the adsorbents. Adsorption studies signify that both the adsorbents have good adsorptive capacity for Cu(II) ion. Equilibrium of adsorption was described using Langmuir isotherm and the highest qmax value for both the adsorbent were obtained at an operating condition of 20 ml/min flow rate, 15 mg/L influent Cu(II) concentration, and 7 cm bed depth. Regeneration of both the adsorbents suggests that these adsorbents can be used several times for Cu(II) removal. Seven different kinetic models were tested among which the modified dose response model was fitted well for peanut shell and the Thomas model was fitted well for almond shell. These fitted models were further used for scale-up design. Regeneration studies show that peanut shell and almond shell are useful up to the fifth adsorption cycle. Application of these adsorbents with industrial effluent was also reported. This study reveals that peanut and almond shells can be used for Cu(II) removal for industrial wastewater.

  相似文献   

10.
In this study, the removal of Cr(III) and Cu(II) from contaminated wastewaters by rice husk, as an organic solid waste, was investigated. Experiments were performed to investigate the influence of wastewater initial concentration, pH of solution, and contact time on the efficiency of Cr(III) and Cu(II) removal. The results indicated that the maximum removal of Cr(III) and Cu(II) occurred at pH 5–6 by rice husk and removal rate increased by increased pH from 1 to 6. It could be concluded that the removal efficiency was enhanced by increasing wastewater initial concentration in the first percentage of adsorption and then decreased due to saturation of rice husk particles. Also according to achieved results, calculated saturation capacity in per gram rice husk for Cr(III) and Cu(II) were 30 and 22.5 mg?g?1, respectively. The amounts of Cr(III) and Cu(II) adsorbed increased with increase in their contact time. The rate of reaction was fast. So that 15–20 min after the start of the reaction, between 50 and 60 % of metal ions were removed. Finally, contact time of 60 min as the optimum contact time was proposed.  相似文献   

11.
旋转填料床/柠檬酸盐法吸收-解吸SO2   总被引:1,自引:1,他引:0  
提出采用旋转填料床结合柠檬酸盐法脱除烟气中SO2的方法,考察了旋转填料床转子转速、液气比、初始柠檬酸根浓度和初始pH值等因素对脱硫效率的影响。结果表明,采用超重力法超重机转子转速为1 000 r/min、液气比为7L/m3、初始柠檬酸根浓度为1.5 mol/L、吸收液的初始pH值为5.0,脱硫效率稳定在99%左右。研究了水蒸气汽提法解吸SO2时初始柠檬酸根浓度、初始pH值、SO2浓度、富液流量和水蒸气流量对解吸效率的影响,得出了影响SO2解吸率的基本规律,并进行了分析。通过实验证明该方法在技术上是可行的,具有良好的应用前景。  相似文献   

12.

This study has been focused on the efficient removal of Pb (II) from contaminated waters by biosorption using plant derived material. Accordingly an indigenous shrub, Tinospora cordifolia has been identified as the most suitable biosorbent. The plant biomass was subjected to optimization of various parameters such as the pH, equilibrium time, dosage, concentration, temperature and the applicable adsorption models. The optimum pH identified was 4.0 with a contact time of 60 min at room temperature (27 ± 2 °C). The experimental data fitted well to adsorption isotherms and the uptake capacity of Pb (II) was found to be 20.83 and 63.77 mg/g in batch mode and column mode, respectively. The high correlation factors obtained for Langmuir and Freundlich models indicated that both models were obeyed by the system. Kinetic study for adsorption of Pb (II) follow only pseudo second order rate of reaction. The accumulation of lead in biomass was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The FTIR analysis indicated the involvement of hydroxyl (−OH), alkenes (=CH) and carbonyl group (C = O) chelates in metal binding. The SEM and EDX analysis showed the structural changes and the filling of voids in the biomass thus, it indicated the metal-binding mechanism. In elution studies, the 0.1 M Na2CO3 was found to be the best with about 71% elution of the adsorbed metal. The biomass was then used for the removal of Pb (II) in synthetic and real wastewater samples from a lead-acid battery industry. It is also noteworthy that even at a very high concentration of 450 mg/L, the biomass was showing about 92% removal. The result is to establish the efficacy of T. cordifolia as a very good bioadsorbent for the Pb (II) removal from contaminated water.

  相似文献   

13.
Electrokinetic (EK) remediation has potential to simultaneously remove heavy metals and organic compounds from soil, but the removal percent of these pollutants is very low in general if no enhancing treatment is applied. This study developed a new enhanced-EK remediation technology to decontaminate a heavy metal–organic compound co-contaminated soil by applying different oxidants and pH control. A red soil was used as a model clayed soil, and was spiked with pyrene and Cu at about 500 mg kg?1 for both to simulate real situation. Bench-scale EK experiments were performed using four oxidants (H2O2, NaClO, KMnO4, and Na2S2O8) and controlling electrolyte pH at 3.5 or 10. After the treatments with 1.0 V cm?1 of voltage gradient for 335 h, soil pH, electrical conductivity, and the concentrations and chemical fractionations of soil pyrene and Cu were analyzed. The results showed that there was significant migration of pyrene and Cu from the soil, and the removal percent of soil pyrene and Cu varied in the range of 30–52% and 8–94%, respectively. Low pH favoured the migration of soil Cu, while KMnO4 was the best one for the degradation of pyrene among the tested oxidants, although it unfortunately prevented the migration of soil Cu by forming Cu oxide. Application of Na2S2O8 and to control the catholyte pH at 3.5 were found to be the best operation conditions for decontaminating the Cu-pyrene co-contaminated soil.  相似文献   

14.
沸石负载淀粉对Pb2+、Cu2+和Ni2+的吸附性能   总被引:1,自引:0,他引:1  
将淀粉负载到沸石表面得到新型重金属离子复合吸附剂ZLS。分别从沸石与淀粉质量比、吸附温度、吸附时间、pH与重金属初始浓度不同方面考察了复合吸附剂ZLS吸附Pb^2+、Cu^2+、Ni^2+的影响。实验结果表明:当沸石与淀粉质量比为10:1,pH为6,吸附温度在30℃时,复合型吸附剂ZLS对Pb^2+、Cu^2+和Ni^2+3种重金属离子的吸附效果最好;吸附动力学研究发现,ZLS对Pb^2+、Cu^2+和Ni^2+的吸附行为均符合准二级动力学以及颗粒内部扩散模型;等温吸附数据符合Fre-undlich模型,吸附状态属于多层吸附。  相似文献   

15.
采用溴化十六烷基吡啶(CPB)对天然沸石进行改性制备得到了CPB改性沸石,通过批量吸附实验考察了CPB改性沸石对水中阴离子染料甲基橙的去除作用。结果表明,天然沸石对水中甲基橙的吸附能力很差,而CPB改性沸石则可以有效吸附去除水中的甲基橙。CPB改性沸石对水中甲基橙的吸附能力随CPB负载量的增加而增加,CPB负载量最大的改性沸石对水中甲基橙的吸附能力最强。双分子层CPB改性沸石对水中甲基橙的去除率随吸附剂投加量的增加而增加,而CPB改性沸石对水中甲基橙的单位吸附量则随吸附剂投加量的增加而降低。双分子层CPB改性沸石对水中甲基橙的吸附平衡数据可以采用Langmuir等温吸附模型加以描述。根据Langmuir模型计算得到的CPB负载量为341 mmol/(kg沸石)的双分子层CPB改性沸石对水中甲基橙的最大吸附容量为63.7 mg/g(303 K和pH 7)。准二级动力学模型适合用于描述双分子层CPB改性沸石对水中甲基橙的吸附动力学过程。pH和反应温度对双分子层CPB改性沸石吸附水中甲基橙的影响较小。以上结果说明,双分子层CPB改性沸石适合作为一种吸附剂用于去除废水中的甲基橙。  相似文献   

16.
对含有表面活性剂的废水(以下简称表活废水)进行了傅里叶红外光谱分析(FTIR),结果表明,废水中所含表面活性剂主要为环烷酸钠。采用次氯酸钙(Ca(ClO)2)和活性炭-Ni催化氧化处理,在Ca(ClO)2投加量为4 500 mg/L,活性炭-Ni投加量为7 000 mg/L时,反应90 min,出水COD为158.91 mg/L,去除率达62.92%。催化氧化出水经沸石吸附处理,在pH为6.85,吸附时间为2 h,沸石投加量为17 g/L的条件下,吸附出水COD和油含量分别为88.92 mg/L和2.53mg/L,去除率分别为45.65%和90.02%,均达到《污水综合排放标准(GB8978-1996)》的一级标准要求。催化剂活性炭-Ni和吸附剂沸石均具有较稳定的活性,在重复使用20次后,出水COD的去除率仅分别降低了1.16%和1.32%。  相似文献   

17.
Ammonia nitrogen pollution control is an urgent issue of landfill. This research aims to select an optimal refuse for ammonia nitrogen removal in landfill from the point of view of adsorption and desorption behavior. MSW (municipal solid waste) samples which deposit ages were in the range of 5 to 15 years (named as R15, R11, R7, and R5) were collected from real landfill site. The ammonia nitrogen adsorption behaviors of MSW including equilibrium time, adsorption isotherms, and desorption behaviors including equilibrium time were determined. Furthermore, the effects of pH, OM, Cu(II), Zn(II), and Pb(II) on adsorption and desorption behavior of ammonia nitrogen were conducted by orthogonal experiment. The equilibrium time of ammonia nitrogen adsorption by each tested MSW was very short, i.e., 20 min, whereas desorption process needed 24 h and the ammonia nitrogen released from refuses was much lesser than that adsorbed, i.e., accounted for 3.20 % (R15), 14.32 % (R11), 20.59 % (R7), and 20.50 % (R5) of each adsorption quantity, respectively. The maximum adsorption capacity estimated from Langmuir isotherm appeared in R15-KCl, i.e., 25,000 mg kg?1. The best condition for ammonia nitrogen removal from leachate was pH >7.5, OM 23.58 %, Cu(II) <5 mg L?1, Zn(II) <10 mg L?1, and Pb(II) <1 mg L?1. Ammonia nitrogen in landfill leachate could be quickly and largely absorbed by MSW but slowly and infrequently released. The refuse deposited for 15 years could be a suitable material for ammonia nitrogen removal.  相似文献   

18.
王龙  高旭  郭劲松  杜蓉 《环境工程学报》2010,4(12):2721-2726
研究了天然沸石、2种有机改性沸石及Mg/Al水滑石对水中痕量邻苯二甲酸二甲酯、邻苯二甲酸二(2-乙基己基)酯和邻苯二甲酸二辛酯的等温吸附情况和吸附机理,并与活性炭的吸附性能进行了比较。结果表明,Freundlich和Langmuir吸附等温方程均可以很好地描述天然沸石和Mg/Al水滑石对邻苯二甲酸酯的吸附,2种有机改性沸石对邻苯二甲酸酯的吸附更符合Linear吸附等温方程。与活性炭相比,天然沸石对邻苯二甲酸酯的吸附效果较差;2种有机改性沸石和Mg/Al水滑石对分子尺寸较小的邻苯二甲酸酯物质邻苯二甲酸二甲酯的去除率较低,分别低31.8%、31.4%和19.8%,但对分子较大的邻苯二甲酸酯物质邻苯二甲酸二(2-乙基己基)酯和邻苯二甲酸二辛酯的去除效果相差不大。  相似文献   

19.
天然沸石同步去除水中氨氮和磷酸盐   总被引:1,自引:0,他引:1  
通过静态吸附实验考察了浙江缙云产天然沸石对溶液中氨氮和磷酸盐的同步去除能力及机制,结果表明,天然沸石对溶液中氨氮的吸附过程较好地满足拟二级动力学模型、Langmuir和Dubinin-Radushkevich等温吸附模型。天然沸石对磷酸盐的去除能力随溶液中初始氨氮浓度的增加而增加。当溶液pH由7.0增加到9.0时,天然沸石对氨氮的吸附能力随之增加,而当pH由9.0增加到10时,天然沸石对氨氮的吸附能力则下降。当溶液pH低于7.5时,天然沸石对溶液中的磷酸盐无去除能力,当溶液pH位于7.5~9.0时,天然沸石对磷酸盐的去除能力随pH的增加急剧增加,当溶液pH大于9.0时,天然沸石对磷酸盐的去除能力随pH的增加则呈下降趋势。天然沸石对溶液中氨氮和磷酸盐的同步去除过程是自发进行、吸热及熵增加的过程。天然沸石对溶液中氨氮的吸附机制为离子交换,对磷酸盐的去除机制则为化学沉淀作用。  相似文献   

20.
电化学脱硝过程参数的响应曲面优化研究   总被引:1,自引:0,他引:1  
以Ti/IrO2-TiO2-RuO2为阳极,Cu/Zn合金电极为阴极,在无隔膜电解池中对这一新构造电极对的脱硝氮性能进行了研究。为了有效结合阴极硝氮还原能力和阳极氧化能力,采用响应曲面法中的Box-Behnken设计优化了对电化学脱硝过程有显著影响的4个重要因素:氯化钠含量、电流密度、pH和初始硝氮浓度。优化结果表明,相对于pH和初始硝氮浓度,氯化钠含量和电流密度对脱硝性能影响更大,而阴极硝氮还原性能主要受初始硝氮浓度、pH的影响。以6 h内电极对脱氮百分率为响应量,优化得最佳电化学脱硝过程参数为:氯化钠含量,1 g/L;电流密度,24.99 mA/cm2;pH,1.81;初始硝氮浓度100 mg/L。在此实验条件下,6 h内电极对脱氮百分率预测值为99.84%。通过3次重复验证实验,确认实际6 h内电极对脱氮百分率为91.34%。预测值与实测值两者相差不大,由此可知,Box-Behnken设计是一种优化电化学脱氮实验参数的有效方法,经过优化后的电极对具有较佳的脱氮效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号