首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Development of baseline (air quality) data in Pakistan   总被引:1,自引:0,他引:1  
During 2003–2004, SUPARCO, the Pakistan Space and Upper Atmosphere Research Commission has conducted a year long baseline air quality study in country’s major urban areas (Karachi, Lahore, Quetta, Rawalpindi, Islamabad and Peshawar). The objective of this study was to establish baseline levels and behavior of airborne pollutants in urban centers with temporal and spatial parameters. This study reveals that the highest concentrations of CO were observed at Quetta (14 ppm) while other pollutants like SO2 (52.5 ppb), NO x (60.75 ppb) and O3 (50 ppb) were higher at Lahore compared to other urban centers like Karachi, Peshawar etc. The maximum particulate (TSP) and PM10 levels were observed at Lahore (996 ug/m3 and 368 ug/m3 respectively), Quetta (778 ug/m3, 298 ug/m3) and in Karachi (410 ug/m3, 302 ug/m3). In all major cities the highest levels were recorded at major intersections and variations were directly correlated with traffic density. These pollutants showed highest levels in summer and spring while lowest were observed in winter and monsoon. A data bank has been generated for future planning and air pollution impact studies.  相似文献   

2.
A field campaign on aerosol chemical properties and trace gases measurements was carried out along the Delhi-Hyderabad-Delhi road corridor (spanning about 3,200 km) in India, during February 1-29, 2004. Aerosol particles were collected on quartz and cellulose filters using high volume (PM(10)) sampler at various locations along the route (i.e., urban, semi-urban, rural, and forest areas) and have been characterized for major cations (Na(+), Ca(2+), Mg(2+), K(+), and NH (4) (+)), anions (Cl(-), NO (3)(-), and SO (4)(2-)), and heavy metals (Cu, Cd, Fe, Zn, Mn, and Pb). Simultaneously, we measured NO(2) and SO(2) gases. These species show large spatial and temporal variations. The ambient PM(10) concentration has been observed to be the highest (55 ± 4 μg m(-3)) near semi-urban areas followed by forest areas (48 ± 2 μg m(-3)) and in rural areas (44 ± 22 μg m(-3)). The concentrations of NO( x ) (NO(2)+NO) and SO(2) ranged from 16 to 69 μg m(-3) and 4 to 11 μg m(-3), respectively. Among anions, NO(3)(-) and SO(4) (2-) are the major constituents of PM(10). The urban and semi-urban sites showed enhanced concentrations of Fe, Zn, Mn, Cd, and Pb. This study provide information about atmospheric concentrations of various species in the northern to central India, which may be important for policy makers to better understand the air quality of the region.  相似文献   

3.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

4.
Mass concentrations and chemical components (18 elements, 9 ions, organic carbon [OC] and elemental carbon [EC]) in atmospheric PM(10) were measured at five sites in Fushun during heating, non-heating and sand periods in 2006-2007. PM(10) mass concentrations varied from 62.0 to 226.3 μg m(-3), with 21% of the total samples' mass concentrations exceeding the Chinese national secondary standard value of 150 μg m(-3), mainly concentrated in heating and sand periods. Crustal elements, trace elements, water-soluble ions, OC and EC represented 20-47%, 2-9%, 13-34%, 15-34% and 13-25% of the particulate matter mass concentrations, respectively. OC and crustal elements exhibited the highest mass percentages, at 27-34% and 30-47% during heating and sand period. Local agricultural residuals burning may contribute to EC and ion concentrations, as shown by ion temporal variation and OC and EC correlation analysis. Heavy metals (Cr, Ni, Zn, Cu and Mn) from coal combustion and industrial processes should be paid attention to in heating and sand periods. The anion/cation ratios exhibited their highest values for the background site with the influence of stationary sources on its upper wind direction during the sand period. Secondary organic carbon were 1.6-21.7, 1.5-23.0, 0.4-17.0, 0.2-33.0 and 0.2-21.1 μg m(-3), accounting for 20-77%, 44-88%, 4-77%, 8-69% and 4-73% of OC for the five sampling sites ZQ, DZ, XH, WH and SK, respectively. From the temporal and spatial variation analysis of major species, coal combustion, agricultural residual burning and industrial emission including dust re-suspended from raw material storage piles were important sources for atmospheric PM(10) in Fushun at heating, non-heating and sand periods, respectively. It was confirmed by principal component analysis that coal combustion, vehicle emission, industrial activities, soil dust, cement and construction dust and biomass burning were the main sources for PM(10) in this coal-based city.  相似文献   

5.
As users of indoor climbing gyms are exposed to high concentrations (PM(10) up to 4000 μg m(-3); PM(2.5) up to 500 μg m(-3)) of hydrated magnesium carbonate hydroxide (magnesia alba), reduction strategies have to be developed. In the present paper, the influence of the use of different kinds of magnesia alba on dust concentrations is investigated. Mass concentrations, number concentrations and size distributions of particles in indoor climbing gyms were determined with an optical particle counter, a synchronized, hybrid ambient real-time particulate monitor and an electrical aerosol spectrometer. PM(10) obtained with these three different techniques generally agreed within 25%. Seven different situations of magnesia alba usage were studied under controlled climbing activities. The use of a suspension of magnesia alba in ethanol (liquid chalk) leads to similar low mass concentrations as the prohibition of magnesia alba. Thus, liquid chalk appears to be a low-budget option to reduce dust concentrations. Magnesia alba pressed into blocks, used as powder or sieved to 2-4 mm diameter, does not lead to significant reduction of the dust concentrations. The same is true for chalk balls (powder enclosed in a sack of porous mesh material). The promotion of this kind of magnesia alba as a means of exposure reduction (as seen in many climbing gyms) is not supported by our results. Particle number concentrations are not influenced by the different kinds of magnesia alba used. The particle size distributions show that the use of magnesia alba predominantly leads to emission of particles with diameters above 1 μm.  相似文献   

6.
7.
In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (<0.4 μm, 0.4-0.7 μm, 1.1-2.1 μm, 2.1-3.3 μm, 3.3-4.7 μm, 4.7-5.8 μm, 5.8-9 μm and >9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and G?ztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial.  相似文献   

8.
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 < 100 microg m(-3), PM2.5 < or = 20 microg m(-3)). However, for apparatus gymnastics (a sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide lines for work places without use of hazardous substances. In addition, minimizing dust concentrations to technologically feasible values is required by the current German legislation. Therefore, substantial reduction of the dust concentration is required.  相似文献   

9.
一次连续在线观测分析天津市细颗粒物污染特征   总被引:2,自引:1,他引:1  
根据2005年的5月17日—5月23日GR IMM(1.109#)谱分析仪在线观测结果考察天津市细颗粒物浓度和质量浓度特征。观测期间,天津市颗粒物数浓度平均值为1 124 cm-3,粒径分布为0.25μm~0.60μm,98.5%粒子的粒径0.65μm。同期PM10日均质量浓度值为204μg/m3,ρ(PM2.5)为104μg/m3,ρ(PM1.0)为82.9μg/m3。ρ(PM1.0)/ρ(PM2.5)超过80%,粒径1μm超细颗粒物为天津城市大气颗粒物的主要成分。  相似文献   

10.
A long-term series (2001-2008) of chemical analysis of atmospheric particulate matter (PM(10) and PM(2.5)) collected in the city of Huelva (SW Spain) is considered in this study. The impact of emission plumes from one of the largest Cu-smelters in the world on air quality in the city of Huelva is evidenced by the high daily and hourly levels of As, other potentially toxic elements (e.g. Cu, Zn, Cd, Se, Bi, and Pb) in particulate matter, as well as the high levels of some gaseous pollutants (NO(2) and SO(2)). Mean arsenic levels in the PM10 fraction were higher than the target value set by European Directive 2004/107/EC (6 ngAs m(-3)) for 1(st) January 2013. Hourly peak concentrations of As and other metals and elements (Zn, Cu, P and Se) analyzed by PIXE can reach maximum hourly levels as high as 326 ngAs m(-3), 506 ngZn m(-3), 345 ngCu m(-3), 778 ngP m(-3) and 12 ngSe m(-3). The contribution of Cu-smelter emissions to ambient PM is quantified on an annual basis in 2.0-6.7 μg m(-3) and 1.8-4.2 μg m(-3) for PM(10) and PM(2.5), respectively. High resolution outputs of the HYSPLIT dispersion model show the geographical distribution of the As ambient levels into the emission plume, suggesting that the working regime of the Cu-smelter factory and the sea breeze circulation are the main factors controlling the impact of the Cu-smelter on the air quality of the city. The results of this work improve our understanding of the behaviour of industrial emission plumes and their impact on air quality of a city, where the population might be exposed to very high ambient concentrations of toxic metals during a few hours.  相似文献   

11.
Source apportionment study was performed, applying principal component analysis to the results of 221 chemical analyses of PM10 and PM2.5 samples collected daily from the industrial (but low traffic) Spanish town of Puertollano over a 14-month period during 2004-2005. Results reveal compositional variations attributable to different mixtures of natural and anthropogenic materials, mainly soil and rock dust (crustal), marine salt (only in PM10), petrochemical refinery emissions, and particles attributed to the combustion of local coal, which is unusually rich in Pb and Sb. During the study period there were 34 pollution episodes when PM10 exceeded 50 tg m(-3), mostly due to winter air temperature inversions, regional atmospheric stagnation, or African dust incursions (North African, NAF days: usually in summer). Whereas the crustal component during NAF episodes averaged 52% with a PM2.5/PM10 ratio of 0.54, this dropped to 29% and a PM2.5/PM10 of 0.67 during non-NAF days when anthropogenic materials predominated. Abnormally enhanced concentrations of pathfinder metallic trace elements provide additional evidence for source apportionment: thus aerosols with raised levels of Pb and Sb are associated with local coal combustion, Ni and V can be linked to petrochemical PM emissions, and Ti, Mn, Rb, and Ce are particularly characteristic of crustal dust incursions.  相似文献   

12.
Aerosol particle samples (PM10) were collected at urban, industrial and rural sites located in Rio de Janeiro, Brazil, between October 2008 and September 2009. Aerosol samples for each site were analyzed for total and soluble metals, water-soluble ions, carboxylic acids, and water-soluble organic carbon (WSOC). The results showed that the mean PM10 concentrations were 34 μg m(-3); 47 μg m(-3) and 71 μg m(-3) at the rural, urban and industrial sites, respectively. An increase in the average concentration of these particles due to air stagnation was observed during the period from May to September for all sites, and an increase in hospitalization for respiratory problems was also reported. On average, the anions species represented 4 to 14% of total content, while cations species corresponded to 1 to 11% and 7.5% for WSOC. The overall metal content at the industrial site was nearly the double that at the rural site. The concentrations of the studied species are influenced mainly by site location and the specific characteristics present at each site. However, higher concentrations of some species were observed on particular dates and were probably due to biomass burning and African dust events. The acid/aqueous percentiles showed that the most efficiently extracted metals from the aqueous phase were V and Ni (40%), while Al and Fe represented a lower percentage (<3%). Analysis of the aqueous fraction provides important information about the bioavailability of metals that is associated with the inflammatory process in the lungs.  相似文献   

13.
采用在线单颗粒气溶胶质谱技术源解析方法,对桂林市PM2.5典型排放源的粒径和化学成分进行质谱分析,采集燃煤/燃气源、工业工艺源、扬尘源、油烟源4类共计7个典型排放源。结果表明,桂林市4类排放源细颗粒物的粒径分布为0.25~1.25μm,80%以上的细颗粒分布在0.2~1.0μm的小粒径范围,峰值约0.68μm。细颗粒物离子成分含有Na~+、Mg~+、K~+、NH~+4、Fe~+、Pb~+、Cd~+、V~+、Mn~+、Li~+、Al~+、Ca~+、Cu~+、Zn~+、Cr~+、CN~-、PO_3~-、NO_2~-、NO_3~-、Cl~-、SO_4~(2-)、SiO_3~-等成分,桂林市细颗粒物为元素碳、有机碳元素碳、有机碳、富锰颗粒、富铁颗粒、富钾颗粒、矿物质、左旋葡聚糖以及其他金属等9类。  相似文献   

14.
The aim of this study was to characterise personal exposures to dust, acid vapours, and gases among workers in a Norwegian nitrate fertiliser production plant, as part of an ongoing epidemiological study. In total, 178 inhalable and 179 thoracic aerosol mass fraction samples were collected from randomly chosen workers (N = 141) from three compound fertiliser departments (A, B and C), a calcium nitrate fertiliser production department, nitric acid- and ammonia-production departments, and a shipping department. The overall median inhalable and thoracic aerosol mass concentrations were generally low (1.1 mg m(-3) (min-max: <0.93-45) and 0.21 mg m(-3) (min-max: <0.085-11), respectively). Workers at the compound fertiliser departments B and C had significantly higher inhalable aerosol mass air concentrations compared to the other departments (p < 0.05), except for compound fertiliser department A; however, the difference between the compound fertiliser department C and calcium nitrate department was slightly above the significant level. Workers at the compound fertiliser department A had significantly higher thoracic aerosol mass air concentrations compared to the other departments (p < 0.05), except for compound fertiliser departments B and C. The results indicate that the extrathoracic aerosol fraction of the aerosol compared to the thoracic fraction dominated in most departments. Measurement of the main constituents Ca, K, Mg, and P in the water-soluble and water-insoluble aerosol mass fractions showed that the air concentrations of these elements were low. There is, however, a shift towards more water-soluble species as the production goes from raw material with phosphate rock towards the final product of fertilisers. Overall, the arithmetic mean of water-soluble Ca in the thoracic mass fraction was 51% (min-max: 1-100). A total of 169 personal samples were analysed for HNO(3) vapour and HF. The highest median concentration of HNO(3) (0.63 mg m(-3)) was in the compound fertiliser departments B, and all measurements but four of the HF concentrations were below the LOD of 190 μg m(-3). Exposures to NH(3), CO and NO(2) were measured using direct-reading electrochemical sensors and the time weighted overall averages were all below the LODs of the respective sensors, NH(3) 2 ppm; CO 2 ppm; and NO(2) 0.2 ppm, but some short-term peaks were detected. Even though our results indicate that the workers may experience peak exposure episodes when performing job tasks such as cleaning or maintenance work, the overall air concentrations are well below what is considered to cause known health risks.  相似文献   

15.
Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern China, the Yellow Sea, and the Korean Peninsula to the Korea East Sea was characterized by high AOD distributions. In the episode of anthropogenic polluted aerosols, FW averaged 0.63 ± 0.16, a value higher than that in the episode of airborne dust particles (0.52 ± 0.13) with sandstorms, showing that fine anthropogenic pollutant particles contribute greatly to atmospheric aerosols in East Asia.  相似文献   

16.
为了解可吸入颗粒物污染水平与气象因素之间的关系,从2008年9月—2010年2月采集乌鲁木齐市可吸入颗粒物样品,并对其随时间的变化特征及其与气象因素之间的相关性进行了统计分析。结果表明,采样时间内可吸入颗粒物中PM2.5和PM2.5-10的质量浓度的范围分别为38.2~468.7μg/m3和20.8~243.1μg/m3,平均浓度分别为134.2μg/m3和69.2μg/m3。可吸入颗粒物同时受几种气象因素的影响,其浓度与温度、能见度、风速呈负相关,与湿度呈正相关。  相似文献   

17.
The renovation of a building will certainly affect the quality of air in the vicinity of where associated activities were undertaken, this includes the quality of air inside the building. Indoor air pollutants such as particulate matter, heavy metals, and fine fibers are likely to be emitted during renovation work. This study was conducted to determine the concentration of heavy metals, asbestos and suspended particulates in the Biology Building, at the Universiti Kebangsaan, Malaysia (UKM). Renovation activities were carried out widely in the laboratories which were located in this building. A low-volume sampler was used to collect suspended particulate matter of a diameter size less than 10 μm (PM??) and an air sampling pump, fitted with a cellulose ester membrane filter, were used for asbestos sampling. Dust was collected using a small brush and scope. The concentration of heavy metals was determined through the use of inductively coupled plasma-mass spectroscopy and the fibers were counted through a phase contrast microscope. The concentrations of PM?? recorded in the building during renovation action (ranging from 166 to 542 μg m?3) were higher than the value set by the Department of Safety and Health for respirable dust (150 μg m?3). Additionally, they were higher than the value of PM?? recorded in indoor environments from other studies. The composition of heavy metals in PM?? and indoor dust were found to be dominated by Zn and results also showed that the concentration of heavy metals in indoor dust and PM?? in this study was higher than levels recorded in other similar studies. The asbestos concentration was 0.0038 ± 0.0011 fibers/cc. This was lower than the value set by the Malaysian Department of Occupational, Safety and Health (DOSH) regulations of 0.1 fibers/cc, but higher than the background value usually recorded in indoor environments. This study strongly suggests that renovation issues need to be considered seriously by relevant stakeholders within the university in order to ensure that the associated risks toward humans and indoor environment are eliminated, or where this is not feasible, minimized as far as possible.  相似文献   

18.
为了探讨厦门金砖会晤期间的排放控制措施以及天气形势对大气颗粒物污染特征的影响,于2017年8月10日至9月10日对厦门气态污染物、细颗粒物(PM2.5)中的水溶性离子以及有机碳(OC)、元素碳(EC)等主要化学成分开展了高时间分辨率的在线监测。根据空气质量管控措施和天气形势将研究期分为6个阶段。管控前、管控期Ⅰ(非台风)和管控期Ⅱ(非台风) PM2.5质量浓度分别为(33. 12±9. 48)、(30. 30±17. 00)、(16. 01±4. 71)μg/m^3。管控期Ⅰ(台风)和管控期Ⅱ(台风) PM2.5质量浓度分别为(12. 40±3. 73)、(12. 45±3. 28)μg/m^3。结果表明:管控期Ⅰ(非台风)阶段受静稳天气的影响,管控效果削弱,PM2.5质量浓度下降幅度小;台风对颗粒物质量浓度下降的影响比管控更显著。管控初期,PM2.5中二次无机离子的质量浓度下降明显;台风对碳质组分质量浓度的影响不如无机组分显著。PMF源解析结果表明,二次无机源是PM2.5主要来源,随着管控措施的实行,扬尘源的贡献从21%降低到6%,而机动车源的贡献降幅不明显。台风期间SO4^2-、NO3^-、SO2、NO2以及硫酸盐氧化比值(SOR)均明显低于非台风期间,氮氧化比值(NOR)反而升高。台风和非台风期间NOR的日变化特征一致,NOR与阳离子的相关性分析结果表明,台风或高风速海风期间NOR与Na^+呈现很强的正相关性,说明海盐粒子可促进NO2非均相反应生成NO3-。  相似文献   

19.
The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist.  相似文献   

20.
Concentrations of black carbon and nitrogen dioxide have been collected concurrently using a MicrAeth AE-51 and an Aeroqual GSS NO(2) sensor. Forty five sampling events with a duration spanning between 16 and 22 hours have collected 10,800 5 min data in Birmingham (UK) from July to October 2011. The high temporal resolution database allowed identification of peak exposures and which activities contributed the most to these peaks, such as cooking and commuting. Personal exposure concentrations for non-occupationally exposed subjects ranged between 0.01 and 50 μg m(-3) for BC with average values of 1.3 ± 2.2 μg m(-3) (AM ± SD). Nitrogen dioxide exposure concentrations were in the range 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号