首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
评价与监测   6篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The mechanistic model of the Advanced Reach Tool (ART) provides a relative ranking of exposure levels from different scenarios. The objectives of the calibration described in this paper are threefold: to study whether the mechanistic model scores are accurately ranked in relation to exposure measurements; to enable the mechanistic model to estimate actual exposure levels rather than relative scores; and to provide a method of quantifying model uncertainty. Stringent data quality guidelines were applied to the collated data. Linear mixed effects models were used to evaluate the association between relative ART model scores and measurements. A random scenario and company component of variance were introduced to reflect the model uncertainty. Stratified analyses were conducted for different forms of exposure (abrasive dust, dust, vapours and mists). In total more than 2000 good quality measurements were available for the calibration of the mechanistic model. The calibration showed that after calibration the mechanistic model of ART was able to estimate geometric mean (GM) exposure levels with 90% confidence for a given scenario to lie within a factor between two and six of the measured GM depending upon the form of exposure.  相似文献   
2.
3.
4.
The objective of this study was to compare measured concentrations of rubber process dust and rubber fume originating from different sources in the British rubber manufacturing industry. Almost 8000 exposure measurements were obtained from industry-based survey results collected by the British Rubber Manufacturers' Association (BRMA), and covering the years 1977 to 2002, and from a series of small surveys contained in the Health and Safety Executive's (HSE) National Exposure Database (HSE-NEDB) from 1980 to 2002. The analysis investigated temporal trends in the exposure concentrations and the underlying main factors responsible for these changes. Analyses were carried out using hierarchical linear mixed effects models. Average personal exposures to rubber process dust and rubber fumes were respectively a factor 2 and 4 higher for the HSE-NEDB data when compared to data originating from the industry (BRMA data). Personal exposure to rubber process dust decreased on average by 4.1% (95% CI 4.7-3.6) annually for the BRMA data and slightly less at 2.3% (95% CI 5.2-0.7%) per annum for the HSE-NEDB data. Personal exposure to rubber fume also showed a downward temporal trend of 2.9% (95% CI 3.6-2.3%) and 4.8% (95% CI 7.4-2.1%) annually for the BRMA and HSE-NEDB data, respectively. These trends differed considerably between departments. No major changes in the estimated temporal trends in exposure concentrations were observed after including the presence of local exhaust ventilation in the models for any department in the BRMA and HSE-NEDB datasets. Lack of information on the quality and status of the local exhaust ventilation is the most likely explanation for this. In conclusion, even though there were relatively similar downward time trends in both rubber process dust and fume concentrations in both datasets, the source of exposure data was an important determinant of average exposure concentrations present in the British rubber manufacturing industry. Lack of detailed auxiliary information on company size, reason for sampling, measurement strategy and other potentially important determinants of exposure prevented an explanation for the observed differences in exposure level.  相似文献   
5.
The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 μm, 2.5 μm and 1 μm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist.  相似文献   
6.
As it is often difficult to obtain sufficient numbers of measurements to adequately characterise exposure levels, occupational exposure models may be useful tools in the exposure assessment process. This study aims to refine and validate the inhalable dust algorithm of the Advanced REACH Tool (ART) to predict airborne exposure of workers in the pharmaceutical industry. The ART was refined to reflect pharmaceutical situations. Largely task based workplace exposure data (n = 192) were collated from a multinational pharmaceutical company with exposure levels ranging from 5 × 10(-5) to 12 mg m(-3). Bias, relative bias and uncertainty around geometric mean exposure estimates were calculated for 16 exposure scenarios. For 12 of the 16 scenarios the ART geometric mean exposure estimates were lower than measured exposure levels with on average, a one-third underestimation of exposure (relative bias -32%). For 75% of the scenarios the exposure estimates were, within the 90% uncertainty factor of 4.4, as reported for the original calibration study, which may indicate more uncertainty in the ART estimates in this industry. While the uncertainty was higher than expected this is likely due to the limited number of measurements per scenario, which were largely derived from single premises.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号