首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
烟草悬浮细胞抗氧化系统对微囊藻毒素-RR的响应   总被引:4,自引:1,他引:3       下载免费PDF全文
采用0.1mg/L的微囊藻毒素-RR(MC-RR)处理烟草BY-2悬浮细胞,测定了细胞活力、细胞内活性氧(ROS)及抗氧化系统的变化.结果表明,处理144h后,BY-2的细胞活力与对照相比无显著差异,但是处理细胞的ROS含量随着MC-RR处理时间的延长而迅速上升,96h后,细胞的ROS含量与对照差异显著;毒素处理细胞的过氧化物酶(POD)和谷胱甘肽过氧化物酶(GPX)活性明显升高,分别在处理48h和72h后与对照差异显著;细胞中还原型谷胱甘肽(GSH)含量有一个先下降后升高的过程,96h后,MC-RR处理的细胞中GSH含量显著高于对照;然而,0.1mg/L的MC-RR处理144h后,过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性与对照相比没有显著差异.恢复处理168h后,抗氧化系统各个指标均恢复到对照水平.  相似文献   

2.
During the summers of 2008 and 2009, net methane(CH4) and nitrous oxide(N2O) fluxes were investigated from 4 tundra ecotopes: normal lowland tundra(LT), bird sanctuary tundra(BT), the tundra in an abandoned coal mine(CT) and the tundra in scientific bases(ST) in Ny-Alesund of the High Arctic. Tundra soils in CT(184.5 ± 40.0 μg CH4/(m2·hr)) and ST(367.6 ± 92.3 μg CH4/(m2·hr)) showed high CH4 emissions due to the effects of human activities, whereas high CH4 uptake or low emission occurred in the soils of LT and BT.The lowland tundra soils(mean,-4.4-4.3 μg N2O/(m2·hr)) were weak N2 O sources and even sinks. Bird activity increased N2 O emissions from BT with the mean flux of7.9 μg N2O/(m2·hr). The mean N2 O fluxes from CT(45.4 ± 10.2 μg N2O/(m2·hr)) and ST(78.8 ± 18.5 μg N2O/(m2·hr)) were one order of magnitude higher than those from LT and BT, indicating that human activities significantly increased N2 O emissions from tundra soils. Soil total carbon and water regime were important factors affecting CH4 fluxes from tundra soils. The N2 O fluxes showed a significant positive correlation with ammonia nitrogen(NH4+-N) contents(r = 0.66, p 〈 0.001) at all the observation sites, indicating that ammonia nitrogen(NH4+-N) content acted as a strong predictor for N2 O emissions from tundra soils. The CH4 and N2O fluxes did not correspond to the temperature variations of soil at 0-15 cm depths.Overall our results implied that human activities might have greater effects on soil CH4 and N2O emissions than current climate warming in Ny-Alesund, High Arctic.  相似文献   

3.
Anaerobic ammonium oxidation (Anammox) has become a promising method for biological nitrogen removal. However, this biotechnology application is always limited due to the low growth rate and biomass yield of Anammox bacteria. This study investigated the process of fast reactivation of an Anammox consortium idled for 2 years uia hydrodynamic stress control. The results showed that the Anammox system was efficiently and quickly reactivated by shortening of the hydraulic retention time (I-IRT) of the reactor from 12 to 6 hr within 68 days of operation. Moreover, at a 4-hr HRT with an influent total nitrogen loading rate of 1.2 kg N/(m3.day), the reactor maintained high biological performance with an ammonium removal loading rate of 0.52 kg N/(m3.day) and a nitrite removal rate of 0.59 kg N/(m3.day). In the reactivated Anammox reaction, the stoichiometric coefficients of NH4-N to NOE-N and NH4-N to NO4-N were 1:1.04± 0.08 and 1:0.31 ± 0.03, respectively. The specific Anammox activity and hydrazine oxidoreductase activity, both of which represent the degree of Anammox bacteria present, increased as the hydrodynamic stress increased and were maximally (125.38 ± 3.01 mg N/(g VSS.day) and 339.42 ± 6.83 μmol/(min.g VSS), respectively) at 4-hr HRT. Microbial response analysis showed that the dominant microbial community was obviously shifted and the dominance of Anammox bacteria was enhanced durinR the hydrodynamic selection.  相似文献   

4.
Ru(Ⅲ) was employed as catalyst for aniline oxidation by permanganate at environmentally relevant pH for the first time. Ru(Ⅲ) could significantly improve the oxidation rate of aniline by 5-24 times with its concentration increasing from 2.5 to 15 μmol/L. The reaction of Ru(Ⅲ) catalyzed permanganate oxidation of aniline was first-order with respect to aniline, permanganate and Ru(Ⅲ), respectively. Thus the oxidation kinetics can be described by a third-order rate law. Aniline degradation by Ru(Ⅲ) catalyzed permanganate oxidation was markedly influenced by pH, and the second-order rate constant (ktapp) decreased from 643.20 to 2.67 (mol/L)^-1 sec^-1 with increasing pH from 4.0 to 9.0, which was possibly due to the decrease of permanganate oxidation potential with increasing pH. In both the uncatalytic and catalytic permanganate oxidation, six byproducts of aniline were identified in UPLC-MS/MS analysis. Ru(Ⅲ), as an electron shuttle, was oxidized by permanganate to Ru(Ⅵ) and Ru(Ⅶ), which acted the co-oxidants for decomposition of aniline. Although Ru(Ⅲ) could catalyze permanganate oxidation of aniline effectively, dosing homogeneous Ru(Ⅲ) into water would lead to a second pollution. Therefore, efforts would be made to investigate the catalytic performance of supported Ru(Ⅲ) toward permanganate oxidation in our future study.  相似文献   

5.
The aerosol number concentration and size distribution as well as size-resolved particle chemical composition were measured during haze and photochemical smog episodes in Shanghai in 2009. The number of haze days accounted for 43%, of which 30% was severe (visibility 〈 2 km) and moderate (2 km 〈 visibility 〈 3 km) haze, mainly distributed in winter and spring. The mean particle number concentration was about 17,000/cm3 in haze, more than 2 times that in clean days. The greatest increase of particle number concentration was in 0.5-1μm and 1-10 μm size fractions during haze events, about 17.78 times and 8.78 times those of clean days. The largest increase of particle number concentration was within 50-100 nm and 100-200 nm fractions during photochemical smog episodes, about 5.89 times and 4.29 times those of clean days. The particle volume concentration and surface concentration in haze, photochemical smog and clean days were 102, 49, 15 μm3/cm3 and 949, 649, 206 μm2/cm3, respectively. As haze events got more severe, the number concentration of particles smaller than 50 nm decreased, but the particles of 50-200 nm and 0.5-1μm increased. The diurnal variation of particle number concentration showed a bimodal pattern in haze days. All soluble ions were increased during haze events, of which NH4, SO24- and NO3 increased great/y, followed by Na+, IC, Ca2+ and CI-. These ions were very different in size-resolved particles during haze and photochemical smog episodes.  相似文献   

6.
Microcystin-LR (MC-LR) is the most abundant and toxic microcystin congener and has been classified as a potential human carcinogen (Group 2B) by the International Agency for Research on Cancer. However, the mechanisms underlying the genotoxic effects of MC-LR during chronic exposure are still poorly understood. In the present study, human–hamster hybrid (AL) cells were exposed to MC-LR for varying lengths of time to investigate the role of nitrogen radicals in MC-LR-induced genotoxicity. The mutagenic potential at the CD59 locus was more than 2-fold higher (p < 0.01) in AL cells exposed to a cytotoxic concentration (1 μmol/L) of MC-LR for 30 days than in untreated control cells, which was consistent with the formation of micronucleus. MC-LR caused a dose-dependent increase in nitric oxide (NO) production in treated cells. Moreover, this was blocked by concurrent treatment with the NO synthase inhibitor NG-methyl-l-arginine (l-NMMA), which suppressed MC-LR-induced mutations as well. The survival of mitochondrial DNA-depleted (ρ0) AL cells was markedly decreased by MC-LR treatment compared to that in AL cells, while the CD59 mutant fraction was unaltered. These results provided clear evidence that the genotoxicity associated with chronic MC-LR exposure in mammalian cells was mediated by NO and might be considered as a basis for the development of therapeutics that prevent carcinogenesis.  相似文献   

7.
The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis.  相似文献   

8.
Chemical characteristics of size-resolved aerosols in winter in Beijing   总被引:4,自引:0,他引:4  
Size-resolved aerosols were continuously collected by a Nano Sampler for 13 days at an urban site in Beijing during winter 2012 to measure the chemical composition of ambient aerosol particles. Data collected by the Nano Sampler and an ACSM(Aerodyne Aerosol Chemical Speciation Monitor) were compared. Between the data sets,similar trends and strong correlations were observed,demonstrating the validity of the Nano Sampler. PM10 and PM2.5concentrations during the measurement were 150.5 ± 96.0 μg/m3(mean ± standard variation)and 106.9 ± 71.6 μg/m3,respectively. The PM2.5/PM10 ratio was 0.70 ± 0.10,indicating that PM2.5dominated PM10. The aerosol size distributions showed that three size bins of 0.5–1,1–2.5 and 2.5–10 μm contributed 21.8%,23.3% and 26.0% to the total mass concentration(TMC),respectively. OM(organic matter) and SIA(secondary ionic aerosol,mainly SO42-,NO3-and NH4+) were major components of PM2.5. Secondary compounds(SIA and secondary organic carbon) accounted for half of TMC(about 49.8%) in PM2.5,and suggested that secondary aerosols significantly contributed to the serious particulate matter pollution observed in winter. Coal burning,biomass combustion,vehicle emissions and SIA were found to be the main sources of PM2.5. Mass concentrations of water-soluble ions and undetected materials,as well as their fractions in TMC,strikingly increased with deteriorating particle pollution conditions,while OM and EC(elemental carbon) exhibited different variations,with mass concentrations slightly increasing but fractions in TMC decreasing.  相似文献   

9.
The optimized production of a novel bioflocculant M-C11 produced by Klebsiella sp. and its application in sludge dewatering were investigated. The optimal medium carbon source,nitrogen source, metal ion, initial pH and culture temperature for the bioflocculant production were glucose, NaNO3, MgSO4, and pH 7.0 and 25°C, respectively. A compositional analysis indicated that the purified M-C11 consisted of 91.2% sugar, 4.6% protein and 3.9% nucleic acids(m/m). A Fourier transform infrared spectrum confirmed the presence of carboxyl, hydroxyl,methoxyl and amino groups. The microbial flocculant exhibited excellent pH and thermal stability in a kaolin suspension over a pH range of 4.0 to 8.0 and a temperature range of 20 to 60°C.The optimum bioflocculating activity was observed as 92.37% for 2.56 mL M-C11 and 0.37 g/L CaCl2 dosages using response surface methodology. The sludge resistance in filtration(SRF)decreased from 11.6 × 1012 to 4.7 × 1012m/kg, which indicated that the sludge dewaterability was remarkably enhanced by the bioflocculant conditioning. The sludge dewatering performance conditioned by M-C11 was more efficient than that of inorganic flocculating reagents,such as aluminum sulfate and polymeric aluminum chloride. The bioflocculant has advantages over traditional sludge conditioners due to its lower cost, benign biodegradability and negligible secondary pollution. In addition, the bioflocculant was favorably adapted to the specific sludge pH and salinity.  相似文献   

10.
A new Gram-positive bacterium, Rhodococcus erythropolis IBBPo1(KF059972.1) was isolated from a crude oil-contaminated soil sample by enrichment culture method. R. erythropolis IBBPo1 was able to tolerate a wide range of toxic compounds, such as antibiotics(800–1000 μg/mL),synthetic surfactants(50–200 μg/mL), and organic solvents(40%–100%). R. erythropolis IBBPo1 showed good tolerance to both alkanes(cyclohexane, n-hexane, n-decane) and aromatics(toluene, styrene, ethylbenzene) with logPOW(logarithm of the partition coefficient of the solvent in octanol–water mixture) values between 2.64 and 5.98. However, alkanes were less toxic for R. erythropolis IBBPo1 cells, compared with aromatics. The high organic solvent tolerance of R. erythropolis IBBPo1 could be due to the presence in their large genome of some catabolic(alkB, alkB1, todC1, todM, xylM), transporter(HAE1) and trehalose-6-phosphate synthase(otsA1, KF059973.1) genes. Numerous and complex physiological cellular responses and adaptations involved in organic solvent tolerance were revealed in R. erythropolis IBBPo1 cells exposed 1 and 24 hr to 1% organic solvents. R. erythropolis IBBPo1 cells adapt to 1% organic solvents by changing surface hydrophobicity, morphology and their metabolic fingerprinting.Considerable modifications in otsA1 gene sequence were also observed in cells exposed to organic solvents(except ethylbenzene).  相似文献   

11.
A simple, cost effective and rapid electrochemical method has been developed for the determination of micro level ortho nitrobenzaldehyde(ONB) based on outstanding properties of modified aluminum electrode tin nanorods/anodic aluminum oxide/aluminum(SnNR/AAO/Al) for the first time. The SnNR/AAO/Al electrode was fabricated by a second step anodization, followed by electrodeposition and its electrochemical behavior was investigated in detail. The cyclic voltammetry results indicated that the SnNR/AAO/Al electrode exhibited efficient electrocatalytic activity toward reduction of ONB in the acidic solution. It provides an appreciable improvement of reduction peak for ONB at-0.721 V.Furthermore, various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated from the scan rates.The electrocatalytic behavior was further exploited as a sensitive detection scheme for the ONB determination by differential pulse voltammetry. Under the optimized conditions, the concentration range and detection limit are 0.1-100 μmol/L and 0.05 μmol/L, respectively,for ONB. The analytical performance of this modified sensor has been evaluated for detection of real sample such as river water and recovery of ONB was achieved all-out up to102.3% under standard addition method.  相似文献   

12.
A field campaign on air quality was carried out in Shanghai in winter of 2012. The concentrations of NO, NO2, NOx, SO2, CO, and PM2.5 increased during haze formation. The average masses of SO42-, NO3- and NH4+ were 10.3, 11.7 and 6.7 μg/m3 during the haze episodes, which exceeded the average (9.2, 7.9, and 3.4 μg/m3) of these components in the non-haze days. The mean values for the aerosol scattering coefficient (bsp), aerosol absorption coefficient (bap) and single scattering albedo (SSA) were 288.7, 27.7 and 0.91 Mm-1, respectively. A bi-peak distribution was observed for the mass concentrations of CO, NO, NO2, and NOx. More sulfate was produced during daytime than that in the evening due to photochemical reactions. The mass concentration of NH4+ achieved a small peak at noontime. NO3- showed lower concentrations in the afternoon and higher concentrations in the early morning. There were obvious bi-peak diurnal patterns for bsp and bap as well as SSA. bsp and bap showed a positive correlation with PM2.5 mass concentration. (NH4)2SO4, NH4NO3, organic mass, elemental carbon and coarse mass accounted for 21.7%, 19.3%, 31.0%, 9.3% and 12.3% of the total extinction coefficient during non-haze days, and 25.6%, 24.3%, 30.1%, 8.1% and 8.2% during hazy days. Organic matter was the largest contributor to light extinction. The contribution proportions of ammonium sulfate and ammonium nitrate to light extinction were significantly higher during the hazy time than during the non-haze days.  相似文献   

13.
14.
A typical Printed Circuit Board(PCB) manufacturer was chosen as the object of this study.During PCB processing, fine particulate matter and heavy metals(Cu, Zn, Pb, Cr, Cd and Ni)will be released into the air and dust, which then impact workers' health and the environment. The concentrations of total suspended particle(TSP), PM10 and PM2.5in the off-site were 106.3, 90.0 and 50.2 μg/m3, respectively, while the concentrations of TSP, PM10 and PM2.5in the workshops ranged from 36.1 to 365.3, from 27.1 to 289.8 and from 22.1 to212.3 μg/m3, respectively. Almost all six of the heavy metals were detected in all of the particle samples except Cd. For each workshop, it was obvious that Zn was the most enriched metal in TSP, followed by Cu 〉 Pb(Cr) 〉 Ni 〉 Cd, and the same trend was found for PM10 and PM2.5. In the dust samples, Cu(which ranged from 4.02 to 56.31 mg/g) was the most enriched metal, followed by Zn, Cr, Pb, Ni and Cd, and the corresponding concentrations ranged from 0.77 to 4.47, 0.37 to 1.59, 0.26 to 0.84, 0.13 to 0.44 and nd to0.078 mg/g, respectively. The health risk assessment showed that noncancerous effects are unlikely for Zn, Pb, Cr, Cu, Cd and Ni. The carcinogenic risks for Cd and Ni were all lower than 10-6, except for Cr. This result indicates that carcinogenic risks for workers are relatively possible in the workshops. These findings suggest that this technology is advanced from the perspective of environmental protection in the waste PCB's recycling industry.  相似文献   

15.
The present study uses the data collected from Cimel Sunphotometer of Aerosol Robotic Network(AERONET) for the period from January to December, 2012 over an urban site,Pretoria(PTR; 25.75°S, 28.28°E, 1449 m above sea level), South Africa. We found that monthly mean aerosol optical depth(AOD, τa) exhibits two maxima that occurred in summer(February) and winter(August) having values of 0.36 ± 0.19 and 0.25 ± 0.14,respectively, high-to-moderate values in spring and thereafter, decreases from autumn with a minima in early winter(June) 0.12 ± 0.07. The Angstrom exponents(α440–870) likewise,have its peak in summer(January) 1.70 ± 0.21 and lowest in early winter(June) 1.38 ± 0.26,while the columnar water vapor(CWV) followed AOD pattern with high values(summer) at the beginning of the year(February, 2.10 ± 0.37 cm) and low values(winter) in the middle of the year(July, 0.66 ± 0.21 cm). The volume size distribution(VSD) in the fine-mode is higher in the summer and spring seasons, whereas in the coarse mode the VSD is higher in the winter and lower in the summer due to the hygroscopic growth of aerosol particles.The single scattering albedo(SSA) ranged from 0.85 to 0.96 at 440 nm over PTR for the entire study period. The averaged aerosol radiative forcing(ARF) computed using SBDART model at the top of the atmosphere(TOA) was- 8.78 ± 3.1 W/m2, while at the surface it was- 25.69 ± 8.1 W/m2 leading to an atmospheric forcing of + 16.91 ± 6.8 W/m2, indicating significant heating of the atmosphere with a mean of 0.47 K/day.  相似文献   

16.
Bioaerosols from wastewater treatment processes are a significant subgroup of atmospheric aerosols. In the present study,airborne microorganisms generated from a wastewater treatment station(WWTS) that uses an oxidation ditch process were diminished by ventilation.Conventional sampling and detection methods combined with cloning/sequencing techniques were applied to determine the groups,concentrations,size distributions,and species diversity of airborne microorganisms before and after ventilation. There were 3021 ± 537 CFU/m3 of airborne bacteria and 926 ± 132 CFU/m3 of airborne fungi present in the WWTS bioaerosol.Results showed that the ventilation reduced airborne microorganisms significantly compared to the air in the WWTS. Over 60% of airborne bacteria and airborne fungi could be reduced after4 hr of air exchange. The highest removal(92.1% for airborne bacteria and 89.1% for fungi) was achieved for 0.65–1.1 μm sized particles. The bioaerosol particles over 4.7 μm were also reduced effectively. Large particles tended to be lost by gravitational settling and small particles were generally carried away,which led to the relatively easy reduction of bioaerosol particles0.65–1.1 μm and over 4.7 μm in size. An obvious variation occurred in the structure of the bacterial communities when ventilation was applied to control the airborne microorganisms in enclosed spaces.  相似文献   

17.
一氧化氮(NO)和活性氧(ROS)均是非常重要的信号分子,然而其在二氧化硫(SO2)对观赏植物毒作用过程中可能的信号作用还不清楚.因此,本文以万寿菊叶片下表皮为材料,采用表皮条分析法研究了SO2胁迫引起的保卫细胞死亡和胞内NO、ROS水平变化情况.结果显示:SO2衍生物(终浓度0.4~4.0 mmol·L-1)处理能引起万寿菊叶片下表皮保卫细胞生理活性下降,死亡率增加,且存在剂量效应,细胞出现核固缩、核降解、核拉长等典型核凋亡特征.同时,保卫细胞内NO、ROS和Ca2+水平显著升高(p0.05).用不同浓度的NO干扰剂(NO合酶抑制剂L-NAME、硝酸还原酶抑制剂Na N3及NO清除剂c-PTIO)、ROS清除剂(CAT和As A)、钙离子干扰剂(Ca2+螯合剂EGTA和Ca2+通道抑制剂La Cl3)分别与2.0 mmol·L-1SO2衍生物同时处理后,保卫细胞死亡率及相对应的胞内NO、ROS、Ca2+水平显著低于同期SO2衍生物单独处理组(p0.05).在用As A、L-NAME分别与2.0 mmol·L-1SO2衍生物共同处理后,同时检测ROS、NO及Ca2+含量,发现三者均显著低于SO2衍生物单独处理组;同理,用EGTA和2.0 mmol·L-1SO2衍生物共同处理后,尽管这时Ca2+水平显著下降,但ROS和NO含量却降低不显著.这一结果表明,NO和ROS在Ca2+的上游,且可能通过NO-Ca2+或者NO-ROS-Ca2+信号途径调节SO2诱导的万寿菊保卫细胞凋亡.  相似文献   

18.
MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.  相似文献   

19.
Food has been documented as one of major routes for human exposure to environmental estrogens(EEs), but information on the occurrence of EEs in animal foodstuffs is still scarce.This study analyzed estrogenic activity in 16 types of animal foodstuffs(n = 142) collected from four cities(Wuhan, Guangzhou, Wenzhou and Yantai) of China by combined yeast estrogen screen(YES) bioassay and chemical analysis. By bioassay, all samples' extracts were found to induce estrogenic activities and the bioassay-derived 17β-estradiol equivalent(EEQbio) ranged from 8.29 to 118.32 ng/g. In addition, the samples were analyzed by liquid chromatography coupled to tandem mass spectrometry for further chemical analysis. 17β-Estradiol was found in all samples in this survey at levels of 0.44 to 15.04 ng/g.All samples had 33.1% detection rate of 17α-ethinylestradiol(EE2), and the maximum concentration was 2.80 ng/g. Bisphenol A and 4-nonylphenols were detected in 83.8% and83.1% of samples, with concentrations up to 12.56 ng/g and 35.76 ng/g, respectively.However, the concentrations of estrone, diethylstilbestrol and 4-t-octylphenol were found to be below the limit of detection. A comparison of EEQbiomeasured from the YES assay and EEQchemcalculated from chemical analysis showed good correlation(R2= 0.84). Based on the results, the YES assay can be used as a rapid pre-screening method for monitoring the levels of estrogenic activity in large numbers of animal foodstuffs, and chemical analysis used in combination can be used for the identification of specific EEs.  相似文献   

20.
In an attempt to elucidate the effects of different CO2 concentrations (270, 380, and 750 μL/L) on the competition of microcystin-producing (MC-producing) and non-MC-producing Microcystis strains during dense cyanobacteria blooms, an in situ simulation experimentwas conducted in the Meiliang Bay of Lake Taihu in the summer of 2012. The abundance of total Microcystis and MC-producing Microcystis genotypes was quantified based on the 16S rDNA and mcyD gene using real-time PCR. The results showed that atmospheric CO2 elevation would significantly decrease the pH value and increase the dissolved inorganic carbon (DIC) concentration. Changes in CO2 concentration did not show significant influence on the abundance of total Microcystis population. However, CO2 concentrations may be an important factor in determining the subpopulation structure of Microcystis. The enhancement of CO2 concentrations could largely increase the competitive ability of non-MC-producing over MC-producing Microcystis, resulting in a higher proportion of non-MC-producing subpopulation in treatments using high CO2 concentrations. Concurrently, MC concentration in water declined when CO2 concentrations were elevated. Therefore, we concluded that the increase of CO2 concentrations might decrease potential health risks of MC for human and animals in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号