首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To realize an intelligent machine tool, which can autonomously determine the cutting states and can change them automatically as required due to changes in the environmental conditions, a method has been developed to monitor and identify the states of cutting for CNC turning based on a pattern recognition technique. The method proposed introduces three parameters to classify the cutting states of continuous chip formation, broken chip formation, and chatter. Among the states of cutting, the broken chip formation is required for the stable and reliable machining process. The three parameters are calculated and obtained by taking the ratio of the average variances of the dynamic components of three cutting forces. The algorithm was developed to calculate the values of three parameters during the process to obtain the reference feature spaces and determine the proper threshold values for classification of the cutting states. A tool dynamometer is developed, and implemented to the CNC turning machine to monitor the turning process.It is proved by a series of cutting experiments that the states of cutting are well identified by the method developed and proposed regardless of the cutting conditions. The algorithm is proposed to obtain the broken chips by changing the cutting conditions during the process.  相似文献   

2.
Prediction of machining forces involved in complex geometry can be valuable information for machine shops. This paper presents a mechanistic cutting force simulation model for ball end milling processes, using ray casting and voxel representation methods used in 3D computer graphics field. Using this method, instantaneous uncut chip cross sectional areas can be extracted, which can be used in cutting pressure coefficient extraction and machining simulation including machining forces and geometry of the workpiece. The major advantage of the proposed scheme is that it can simulate milling processes with arbitrary cutting tool geometry on a workpiece with complex geometry, using an algorithm with constant time complexity. A series of cutting experiments were carried out to validate the model.  相似文献   

3.
A new approach to theoretical modeling and simulation of face milling forces is presented. The present approach is based on a predictive machining theory in which machining characteristic factors in continuous cutting with a single-point cutting tool can be predicted from the workpiece material properties, tool geometry, and cutting conditions. The action of a milling cutter is considered as the simultaneous work of a number of single-point cutting tools, and the milling forces are predicted from input data of workpiece material properties, cutter parameters and tooth geometry, cutting condition, cutter and workpiece vibration structure parameters, and types of milling. A predictive force model for face milling is developed using this approach. In the model, the workpiece material properties are considered as functions of strain, strain rate, and temperature. The ratio of cutter tooth engagement over milling is taken into account for the determination of temperature in the cutting region. Cutter runout is included in the modeling for the chip load. The relative displacement between the cutter and workpiece due to the cutter and workpiece vibration is also included in the modeling to consider the effect on the undeformed chip thickness. A milling force simulation system has been developed using the model, and face milling experimental tests have been conducted to verify the simulation system. It is shown that the simulation results agree well with experimental results.  相似文献   

4.
This paper presents a summary of recent developments in developing performance-based machining optimization methodologies for turning operations. Four major machining performance measures (cutting force, tool wear/tool life, chip form/chip breakability, and surface roughness) are considered in the present work, which involves the development and integration of hybrid models for single and multi-pass turning operations with and without the effects of progressive tool wear. Nonlinear programming techniques were used for single-pass operations, while a genetic algorithms approach was adopted for multi-pass operations. This methodology offers the selection of optimum cutting conditions and cutting tools for turning with complex grooved tools.  相似文献   

5.
This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds.  相似文献   

6.
The generation of fine dust during dry machining is a serious problem both for the environment and for workers. During machining, the fine dust particles generated remain suspended in the air for long periods, during they can be inhaled by workers. The quantity of dust generated is influenced by factors such as material type and heat treatment condition, temperature, and the associated chip formation mode. The aim of this work is to discover how these parameters influence dust generation during dry machining, which could lead to the control of dust production in the future. The materials tested are the wrought 6061 and foundry A356 aluminum alloys and 70-30 brass. It is found that pre-cooling a workpiece material leads to changes in chip formation, in the reduction of cutting forces, and hence in a reduction in fine dust generation by at least 70%, depending on the materials and cutting conditions used. Also, pre-heating the workpiece increases chip ductility and dust production levels.  相似文献   

7.
A major obstacle that limits the productivity in machining operations is the presence of machine tool chatter. Machining is a dynamic process and chatter behavior depends upon a number of different aspects including spindle speeds, material properties, tool geometry, and even the location of tool respect to the rest of machine. Many of the traditional models used to predict chatter stability lobes assume that parameters such as natural frequency, stiffness, and cutting coefficients remain constant. In reality, these parameters vary and they affect the chatter stability. The uncertainty in these parameters can be taken into consideration by employing the robust stability theory into a two degree of freedom milling model. Utilizing the Edge theorem and the Zero Exclusion condition, a robust chatter stability model, based on the analytical chatter stability milling model, is developed. This improves the reliability compared to the projected pseudo single degree of freedom model. The method is verified experimentally for milling operations while considering a changing natural frequency and cutting coefficient.  相似文献   

8.
The ball-end milling process is widely used for generating three-dimensional sculptured surfaces with definite curvature. In such cases, variation of surface properties along the machined surface curvatures is not well understood. Therefore, this paper reports the effect of machining parameters on the quality of surface obtained in a single-pass of a ball-end milling cutter with varying chip cross-sectional area. This situation is analogous to generation of free form cavities, pockets, and round fillets on mould surfaces. The machined surfaces show formation of distinct bands as a function of instantaneous machining parameters along the periphery of cutting tool edge, chip compression and instantaneous shear angle. A distinct variation is also observed in the measured values of surface roughness and micro-hardness in these regions. The maximum surface roughness is observed near the tool tip region on the machined surface. The minimum surface roughness is obtained in the stable cutting zone and it increases towards the periphery of the cutter. Similar segmentation was observed on the deformed chips, which could be correlated with the width of bands on the machined surfaces. The sub-surface quality analysis in terms of micro-hardness helped define machining affected zone (MAZ). The parametric effects on the machining induced shear and residual stresses have also been evaluated.  相似文献   

9.
The development and implementation of a microstructure-based finite element model for the machining of carbon fiber-reinforced polymer composites is presented. A new approach to interfacial modeling is introduced where the material interface is modeled using continuum elements, allowing failure to take place in either tension or compression. The model is capable of describing the fiber failure mode occurring throughout the chip formation process. Characteristic fiber length in the chips, and machining forces for microstructures with fibers orientated at 0°, 45°, 90°, and 135° are examined. For model validation purposes, the model-based machining performance predictions are compared to the machining responses from a set of orthogonal machining experiments. A parametric study is presented that identifies a robust tool geometry, which minimizes the effects of fiber orientation and size on the machining forces.  相似文献   

10.
Orthogonal machining of single-crystal and coarse-grained (i.e., grain size considerably larger than the uncut chip thickness) materials has been a subject to many studies in the literature. The first part of this paper presents background on machining single-crystal materials, including experimental and modeling attempts. The second part briefly describes more recent modeling results from the authors, and presents new experimental results on planing and plunge-turning of single-crystal and coarse-grained aluminum using diamond tools. The experiments indicate that (1) cutting across grains of a coarse-grained aluminum workpiece produces distinctly varying forces and surface roughness from one grain to another, (2) plunge-turning and planing of single crystal aluminum provide equivalent force data for large rake angles, (3) forces alter between two distinct levels while cutting single crystals with small rake angles, and (4) with small rake angles, subsurface damage on single-crystal aluminum is extensive, reaching depths comparable to the uncut chip thickness.  相似文献   

11.
Residual stress induced by machining is complex and difficult to predict, since it involves mechanical loads, temperature gradients or phase transformation in the generation mechanism. In this work, an experiment with a statistical design for the residual stress tensor was performed to investigate the residual stress profile on a machined surface. In order to understand the generation mechanism of residual stress in machining, three variables and workpiece materials were carefully selected to focus on the mechanical loads and avoid the temperature gradients and phase transformation on the machined surface. The mechanical loads considered here included the chip formation force at the primary shear zone and the plowing force at the tool tip–workpiece contact. Depths of cut and rake angles were selected to alter the chip formation force, and the tool tip radius was designed to emphasize the plowing effect. The workpiece material was aluminum 3003. The experimental results showed that the chip formation force provides basic shapes of the residual stress profile for a machined surface. It decides the depth of the peak residual stress below the surface. However, the plowing force was the dominating effect on the surface residual stress, causing high stresses on the surface. The plowing force can shift the surface stress from tensile to compressive. Additionally, the measured stress tensor proved that in-plane shear stress exists for the machined surface.  相似文献   

12.
The aim of this work is to investigate the effect of metal-working fluid (MWF) concentration on the machining responses including tool life and wear, cutting force, friction coefficient, chip morphology, and surface roughness during the machining of titanium with the use of the ACF spray system. Five different concentrations from 5 to 15% of a water-soluble metalworking fluid (MWF) were applied during turning of a titanium alloy, Ti–6Al–4V. The thermo-physical properties such as viscosity, surface tension and thermal conductivity of these concentrations were also measured. The test results demonstrate that the tool life first extends with the increase in MWF concentration and then drops with further increase. At low concentration (e.g., 5%), a lack of the lubrication effect causes to increase in a higher friction at the tool–chip interface resulting in severe chipping and tool nose/flank wear within a short machining time. On the other hand, at high concentration, the cooling effect is less. This increases cutting temperature and a faster thermal softening/chipping/notching of the tool material and higher friction at the tool–chip–workpiece interaction zones resulting in early tool failure. A good balance between the cooling and the lubrication effects seems to be found at the 10% MWF concentration as it offers the best machining performance. However, machining with flood coolant is observed to perform the best in the range of 5–7%.  相似文献   

13.
Geometric parameters and material properties are the two major categories of factors affecting burr formation in the milling process. Geometric parameters such as tool geometry, workpiece geometry, or process condition influence workpiece edge quality at the tool-chip interface. This study identifies a unified criterion to analyze burr formation for different tool engagements. The criterion exploits the exit order of cutting edges of the tool along the workpiece edge, which essentially includes the 3-D nature of the process. The criterion correlates the cutting mechanism and burr formation using the exit order sequence (EOS) as an approximation of chip flow angle. The impact of different possible exit order sequences on burr formation is analyzed. Previously observed phenomena are explained based on the EOS. Also, experiments are done with three different materials (with different ductilities) to analyze the impact of material properties on burr formation for a given EOS. Although burr sizes are different quantitatively with different material, the ranking of burr size for different EOS remained the same. An algorithm for the prediction of burr formation in face milling based on EOS is developed and tested and validated on two different profiles of an automotive part.  相似文献   

14.
Environmental issues in machining have led to a push to curtail the use of cutting fluids. However, cutting fluid effects on part quality, process planning, and operator exposure to aerosols need to be first studied. The effects of cutting fluid application on hole accuracy and mist generation have been studied for blind-hole drilling of A390.0 aluminum alloy. Different cutting fluid types and application modes were tested under varying conditions of cutting speed, feed, and hole depth. The cooling and chip-transporting ability of cutting fluids was found to have the maximum effect on dimensional accuracy. Dry cutting yielded holes with the least accuracy, while mist lubrication was found to give superior dimensional accuracy to dry cutting but had the worst aerosol concentration. Flooding with synthetic cutting fluid gave the best overall results.  相似文献   

15.
Single-point diamond turning (SPDT) experiments conducted on single-crystal 6-H silicon carbide (SiC) have shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high-pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for using AdvantEdge, a metal machining simulation software, for comparison to experimental results.Simulations (2D) were carried out by matching the SPDT experimental conditions, which were conducted at nanometer (nm) depths of cut and varying tool rake angles. The experiments were performed by machining the circumference of the single-crystal wafer, thereby conforming to a 2D orthogonal cut (plunge cuts, or an infeed, achieved the depth of cut, and no cross feed was incorporated).The cutting and thrust forces generated from the experiments under ductile cutting conditions compared favorably with the simulation. As the depth of cut is decreased (250 nm, 100 nm, and 50 nm), the experimental conditions transition from a brittle to ductile behavior, with the 50 nm cuts being dominated by the ductile regime. Thus, the forces from the experiment and the simulations are in much better agreement for the smaller depths of cut, that is, below the critical depth of cut that establishes the ductile-to-brittle transition, as ductile conditions exist in both the simulation and experiments. The differences in the results that do arise are assumed to be primarily due to a springback of the material leading to increased rubbing on the flank face.  相似文献   

16.
High-speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the aerospace industry for the machining of complex 3D aerofoil surfaces in titanium alloys and nickel-based superalloys. Following a brief introduction on HSM and related aerospace work, the paper reviews published data on the effect of cutter/workpiece orientation, also known as engagement or tilt angle, on tool performance. Such angles are defined as ±βfN and ±βf.Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force, and workpiece surface roughness when high-speed ball end milling Inconel 718™. Dry cutting was performed using 8 mm diameter PVD-coated solid carbide cutters with the workpiece mounted at an angle of 45° from the cutter axis.A horizontal downward (-βfN) cutting orientation provided the best tool life with cut lengths ∼50% longer than for all other directions (+βfN, +βf, and –βf). Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downward direction produced the least vibration. This contributed to improved workpiece surface roughness, with typical mean values of ∼0.4 μm Ra as opposed to ∼1.25 μm Ra when machining in the vertical downward (–βf) direction.  相似文献   

17.
Accurate prediction of the onset of chatter is difficult in designing and operating a rolling mill. Both the lack of precise rolling process models and analytical methods for the investigation of mill stability have forced designers and users to rely on experience and trial and error, which are time consuming and cost demanding. A comprehensive rolling process model is introduced to form the foundation of chatter analysis that includes a range of possible process variations. Analytical chatter models for both single and multiple-stand rolling mills are constructed that account for interactions between mill structure and rolling process, as well as between adjacent stands. Stability analysis is performed to formulate criteria for rolling mill design and operation. Finally, simulations and experiments are presented to verify some basic components of the rolling process model that constitute the proposed chatter models.  相似文献   

18.
In recent years, demands for miniature components have increased due to their reduced size, weight and energy consumption. In particular, brittle materials such as glass can provide high stiffness, hardness, corrosion resistance and high-temperature strength for various biomedical and high-temperature applications. In this study, cutting properties and the effects of machining parameters on the ductile cutting of soda-lime glass are investigated through the nano-scale scratching process. In order to understand the fundamentals of the material removal mechanism at the atomic scale, such as machined surface quality, cutting forces and the apparent friction, theoretical investigation along with experimental study are needed. Scribing tests have been performed using a single crystal diamond atomic force microscope (AFM) probe as the scratching tool, in order to find the cutting mechanism of soda-lime glass in the nano-scale. The extended lateral force calibration method is proposed to acquire accurate lateral forces. The experimental thrust and cutting forces are obtained and apparent friction coefficients are deduced. The effects of feed rates and the ploughing to shearing transition of soda-lime glass have been investigated.  相似文献   

19.
This paper describes the characteristics and the cutting parameters performance of spindle speeds (n, rpm) and feed-rates (f, mm/s) during three interval ranges of machining times (t, minutes) with respect to the surface roughness and burr formation, by using a miniaturized micro-milling machine. Flat end-mill tools that have two-flutes, made of solid carbide with Mega-T coated, with 0.2 mm in diameter were used to cut Aluminum Alloy AA1100. The causal relationship among spindle speeds, feed-rates, and machining times toward the surface roughness was analyzed using a statistical method ANOVA. It is found that the feed-rate (f) and machining time (t) contribute significantly to the surface roughness. Lower feed-rate would produce better surface roughness. However, when machining time is transformed into total cut length, it is known that a higher feed-rate, that consequently giving more productive machining since produce more cut length, would not degrade surface quality and tool life significantly. Burr occurrence on machined work pieces was analyzed using SEM. The average sizes of top burr for each cutting parameter selection were analyzed to find the relation between the cutting parameters and burr formation. In this research, bottom burr was found. It is formed in a longer machining time compare the formation of top burr, entrance burr and exit burr. Burr formation is significantly affected by the tool condition, which is degrading during the machining process. This knowledge of appropriate cutting parameter selection and actual tool condition would be an important consideration when planning a micro-milling process to produce a product with minimum burr.  相似文献   

20.
Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, two control strategies are developed to suppress chatter vibration in the turning process including a worn tool. In the first stage, a sinusoidal spindle speed variation around the mean speed is modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. In the second stage, to improve the response of the system which is associated with small ripples under the steady state condition, an adaptive controller is designed. In this stage, the provided external force (e.g., by a piezo-actuator) is the input variable. Results are provided for each control strategy. It is shown that if both control approaches are applied simultaneously, chatter vibration is suppressed in less time without any ripples at the steady state condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号