首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assessment of marine pollution due to metals was made for surficial sediments sampled from 20 sites along Mediterranean coast of Egypt. The samples were dried, acid digested and analyzed for leachable and total heavy metal contents (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) by flame atomic absorption spectrophotometer (air–acetylene) with deuterium background correction. Evaluation of the heavy metals pollution status was carried out using enrichment factors (EFs), the effect range-low (ERL) and the effect range-median (ERM). The study showed high concentrations of Cd, Co, Pb, Ni and moderate concentrations of Cr, Cu and Mn were contaminated in the sediments of studied sites. The results of Spearman correlation, factor and cluster analysis of the heavy metals analyzed in the collected sediment were discussed. The main source of contamination is the offshore oil field and industrial wastes, which arise due to the ineffective and inefficient operation equipments, illegal discharge and lack of supervision and prosecution of offenders.  相似文献   

2.
Heavy metals in sediments from Baisha Bay, Nan'ao Island, one of Guangdong Province's largest mariculture bases in Southern China, were investigated. The results display that the concentrations of 6 heavy metals from surface sediments were 0.040-0.220 (Cd), 24.22-39.61 (Pb), 25.30-42.66 (Cr), 10.83-19.54 (Ni), 15.06-39.24 (Cu) and 55.12-141.73 mg kg(-1) (Zn), respectively. The highest concentrations and the greatest increasing rates of heavy metals were found in a sediment core in a fish cage culture area due to receiving sewage discharge, uneaten fish bait, and boat gasoline combustion. Cd was preferentially associated with the acid-soluble fraction and Pb mainly with the reducible fraction in surface sediments. Meanwhile, Cd and Pb displayed greatest labile fractions, indicating anthropogenic origin. A principal component analysis (PCA) revealed three groupings (Cd; Cr, Ni and Cu; Pb and Zn) that mainly result from different distributions of the metals in the various fractions. The ecological risk of the polluted sediments stemmed mainly from Cd, and from Pb and Cu to a lesser degree. It is suggested that the density of fish-stocking be controlled, periodic movement of rafts (cages) be introduced, and the total numbers of net-cages and human activities in the mariculture zones be restricted. in order to facilitate the recovery of the polluted sediment.  相似文献   

3.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

4.
为了解渭河陕西段表层沉积物重金属的污染特征,采用ICP-MS分析了13个采样断面表层沉积物中As、Cd、Cr、Cu、Mn、Ni、Pb和Zn 8种重金属的含量,并对其来源和生态风险进行了评价。结果表明:渭河陕西段8种重金属的平均含量顺序依次为Mn > Zn > Cr > Cu > Ni > Pb > As > Cd;除Ni外的其余7种重金属的平均含量均超过陕西省A层土壤背景值。各断面表层沉积物重金属的潜在生态风险指数(RI)介于111.4~7 043.7,其中23.1%的断面有极强生态风险,46.2%的断面为中等生态风险,其余为轻微生态风险。Cd污染最为严重,对各断面的潜在生态风险介于较强生态风险与极强生态风险之间,对RI的贡献平均为85.2%;其余7种重金属在所有断面均属于轻微生态危害。渭河陕西段表层沉积物As、Cd、Cu和Zn主要为工业与农业来源;Cr和Ni主要为自然来源;Pb和Mn与城市污水和交通污染来源有关。  相似文献   

5.
The main goal of this study is to determine the present heavy metal pollution state in the two gulfs of the Aegean Sea; Saros and Gökova Gulfs. The surface sediments were collected from 11 and eight locations in the Saros and Gökova during May 2001, respectively. The results showed that the sediments of Saros and Gökova gulfs were polluted with Pb, Cr, Zn, Mn, and Ni and Pb, Cr, Ni, and Mn, respectively. For various metals the contamination factor (CF) has been calculated to assess the degree of pollution in sediments. The sediments were noted to be not contaminated with Hg, Cd, and Cu in all areas. Moderate contaminations were observed for Pb, Cr, and Zn in Saros Gulf. The CF was moderate and very high for Ni in the Saros and the Gökova Gulf, respectively.  相似文献   

6.
长江南京段近岸沉积物和土壤中重金属分布特征分析   总被引:2,自引:1,他引:1  
通过测定沉积物和土壤中Cd、Pb、Cr、Zn、Cu、Ni 6种重金属元素的平均含量,计算其富集因子,分析长江南京段近岸沉积物和土壤中重金属的空间分布特征,结果表明,几种重金属在沉积物中的富集次序为:CdPbCr1NiCuZn,在土壤中为:CdZnCu1CrPbNi,除Zn和Cu外,其他几种金属在沉积物中的富集程度高于土壤,同时Cd的含量超过土壤环境质量三级标准。以Cd和Pb为例分析了重金属含量与沉积物粒级之间的关系,回归分析显示,Cd、Pb的含量与颗粒物的粒级呈显著的相关性,与细颗粒物的含量有密切关系,细颗粒携带的重金属,在长江水力分选作用下到达下游,成为沉积物中重金属的主要来源。  相似文献   

7.
Metal Pollution Assessment of Sediment and Water in the River Hindon, India   总被引:7,自引:0,他引:7  
The metal pollution in water and sediment of the River Hindon in western Uttar Pradesh (India) was assessed for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The metal concentrations in water showed wide temporal variation compared with bed sediment because of variability in water discharge and variations in suspended solid loadings. Metal concentrations in bed sediments provided a better evaluation of the degree and the extent of contamination in the aquatic environment, Santagarh and Atali being the most polluted sites of the river. The ratio of heavy metals to conservative elements (Fe, Al, etc.) may reveal the geochemical imbalances due to the elevated metal concentrations normally attributed to anthropogenic sources. Metal/Al ratios for the bed sediments of the river Hindon were used to determine the relative mobility and general trend of relative mobility occurred Fe > Mn > Zn > Cr > Ni > Pb > Cu > Cd.  相似文献   

8.
The distribution of trace metals (spatial and temporal) and sedimentary fractions were investigated to identify the concentrations and sources of trace metals within Kogarah Bay, NSW, Australia. A total of 59 surface sediments and six subsurface samples from core of the sediment were collected. The contamination factor and pollution load index indices used to evaluate environmental effects of trace metals. The study area was found to be uncontaminated with Cr and Ni, moderately contaminated with As and considerably contaminated with Cu, Zn and Pb. The concentrations of Cr and Ni were below both effect range low and effect range median, while As, Cu, Zn and Pb were slightly above effect range low. The highest concentrations of these trace metals such as Cu, Zn and Pb were found in the north, northwest and southeast of the bay, close to discharge points, stormwater outlets and around boatyards and watercrafts. The spatial distributions of metals were strongly related to muddy particles and organic matter. The temporal sediments of metals declined with increased sediment depth, which reflects accumulation of trace metals since European settlement in this area. Furthermore, the source of the trace metals was found to be stormwater outlets, gasoline fumes, boatyards and other human activities.  相似文献   

9.
The contamination levels and ecological risks of heavy metals in the sediments of the Nansi Lake were investigated. The contents of Cd, Cr, Cu, Pb, Zn, Ni, and Co in the surface sediments collected at 20 sites ranged from 0.08 to 1.12, 58.92 to 135.62, 38.09 to 78.65, 24.51 to 53.95, 110.51 to 235.36, 11.30 to 65.40, and 4.12 to 20.14 mg/kg, respectively. The results of partitioning analysis revealed that the proportions of soluble and exchangeable fraction were less than 1 %, the proportions of carbonate, amorphous oxides, organic matter, and crystalline oxides fraction were less than 10 %, and 10.52 % of Cd was associated with carbonate. The average proportions in the residual fraction ranged from 48.62 % for Cu to 73.76 % for Ni, indicating low mobility and bioavailability. The geoaccumulation index (I geo), relative enrichment factor (REF), sediment pollution index (SPI), and potential effect concentration quotient (PECQ) values of the heavy metals in the sediments were not in agreement with each another. The average REF values of Cd and Zn were higher than those of other metals. However, the average PECQ values were higher for Cr and Ni than those of other metals, indicating that these two metals would cause higher adverse biological effects. Therefore, it is suggested that future management and pollution control might focus on Cd, Zn, Cr, and Ni in the sediments of the Nansi Lake.  相似文献   

10.
The chemistry of heavy metals in sediments with respect to bio-availability and chemical reactivity is regulated by pH, texture, and organic matter contents of the sediments and specific binding form and coupled reactivity of the metals within. To focus on the metal distribution (Fe, Mn, Pb, Cd, Zn, Co, Cu, and Cr) and behavior in a fresh water aquifer system along with the ecological toxicity parameters, a four-step sequential extraction method was applied on 18 Eastern Ghats’ type sediments from fluorosis-hit Nayagarh district, India. Geo-accumulation index of metals in the sediments indicates that they are practically uncontaminated and/or less contaminated with and Fe, Mn, and Cu; contaminated to moderately contaminated with Pb, Zn, and Cr; and strongly contaminated with Cd. Rather, more than 80 % recovered Cd metal concentration in sediments constitute the labile fractions. Temporal clustering of metal fractions indicates transition metal fraction distribution claiming the sediment pH regulation. Similarly, base metal distribution accounts for organic carbon and soil conductivity due to their greater availability in exchangeable and sulfide fractions. Correlation analysis and factor analysis scores demonstrate lack of inter-relationship between transition group and base metal fractions. High fluoride concentration in ground water is associated with high sodium-bicarbonate-iron affinity with elevated pH values (i.e., >7.0) and high positive factor score with the total iron concentration in ground water.  相似文献   

11.
Twenty-one surface sediment samples were collected from Akkaya Dam. Heavy metal concentrations (Mo, Cu, Pb, Zn, Ni, Co, Mn, Fe, Cr, As, V and Cd), grain size, organic carbon and carbonate contents were studied in order to assess the extent of environmental pollution and to discuss the origin of these contaminants in sediments of dam. The sediments in the study area are mostly very fine sands. However, mud was observed in the northeast of the dam. Sediment pollution assessment was carried out using enrichment factor. The calculation of enrichment factors showed that Mo is depleted by 1.0 whereas Cu, Pb, Zn, Ni, Co, Mn, As, V, Cr and Cd are enriched by 3, 5.4, 7, 2.7, 2.2, 3.4, 42.3, 2.1, 1.8 and 7.2, respectively. Relatively high concentrations heavy metals occurred in north (textile industry area) and east (Karasu River) due to enrichment controlled by anthropogenic wastes. The results of correlation analysis show low–medium positive and negative correlations among metals, grain size, carbonate contents and organic carbon and indicate that heavy metals in sediments of the Akkaya Dam have different anthropogenic sources.  相似文献   

12.
At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (KNRF) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and KNRF both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37–99% from the background levels less than 30%.  相似文献   

13.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   

14.
The present study deals with sediment dynamics affecting sediment-associated metal distributions in an embayment system experiencing pollution from coastal industries. Sedimentary metal content may originate from diagenetic processes of foundation rock on the bottom, allochthonous minerals from natural sources, and metals from industrial effluents along the coast. The study presents experimental estimations of quantities of metals entering the bay in industrial wastewater, measurements of metal content in particulate material captured in sediment traps, and metals distribution in surface sediments. Quantitative estimations of metals entering the system in industrial effluent showed the relation Pb Zn > Cu > Cr Ni > Cd. That of metals associated with particulate material from traps was Zn > Cr Cu > Pb > Ni > Cd and the abundance of metals in sediments was Zn > Cr > Cu > Pb > Ni > Cd. Finally, rates of bottom sediment accumulation are estimated in relation to the time of residence of water in the bay. The experimental data on sedimentation and sediment abundance were consistent with field observations on distribution and accumulation at sites of major sedimentation in this bay.  相似文献   

15.
苏晓燕  董铮 《干旱环境监测》2013,(4):145-149,168
以2005年以后太湖无锡区域底质为研究对象,分析了太湖底泥中重金属的含量分布及富集状况,采用地积累指数法和潜在生态危害指数法对重金属的生态危害进行评价。结果表明:太湖无锡区域底质受重金属轻度污染,含量高于全国水系沉积物平均值;地积累指数法显示太湖无锡区域底质中重金属污染排序为Cu=As〉Pb〉Zn〉Cr〉Cd〉Hg;金属对太湖无锡区域底质构成的潜在生态危害由强到弱为Hg〉Cu〉As〉Cd〉Pb〉Cr〉Zn;从区域上看,2种评价方法均表明底质中重金属危害程度为宜兴沿岸区〉梅梁湖〉五里湖〉贡湖无锡水域。  相似文献   

16.
Aqaba Gulf is an economically important marine environment in Egypt. Its coastal area was subjected to anthropogenic impact of urbanization and economic development during the last decades. The study was oriented to investigate the distribution as well as assess the heavy metal pollution status (Fe, Mn, Zn, Ni, Co, Cr, Cu, and Cd) in its surface sediment. Large heavy metals fluctuations were detected along the studied area. The results pointed out to the highly significant correlations among Fe, Cu, Ni, and Co heavy metals and their similar lithogenic origin beside their input sources. The sediment quality was performed by using the geo-accumulation index (I (geo)) and different sediment criteria guidelines; China State Bureau of Quality and Technical Supervision (CSBTS), and Canadian guidelines. Among the studied heavy metals, Cd was the only metal that showed moderate pollution for I (geo) as well as it exceeded the primary and the secondary criteria of CSBTS and the threshold effect level of the Canadian guidelines (TEL). On the other hand, the other heavy metals were within the natural background levels.  相似文献   

17.
对克拉玛依石化公司炼油厂达标排放废水库水和底泥中的10种重金属做了监测与评价,研究了其重金属的分布特征。水样的综合污染指数P为0.564,表现为轻度污染,其中Fe和Hg为主要污染分担者,其他重金属处于尚清洁范围。模糊综合评价法评价结果废水库为Ⅲ类水质。底泥地累积指数评价结果表明,Hg和Cd为中度污染,Pb为轻度污染。潜在生态风险指数法评价表明,Cd的单因子生态风险指数为133.2,为较重生态风险,Hg的单因子生态风险指数为225.9,为重度生态风险。除Pb和Cr外,Cu、Zn、Ni、As和Hg都低于全国多数湖泊底泥含量。  相似文献   

18.
Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.  相似文献   

19.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

20.
Determination of only total element in sediments does not give an accurate estimate of the likely environmental impacts. Speciation study of metals in sediment provides information on the potential availability of metals (toxic) to biota under various environmental conditions. In water, the toxic metal specie is the free hydrated metal ion. The toxicity of metals depends especially on their chemical forms rather than their total metal content. The present study focuses on Qaraaoun Reservoir, Lebanon. Earlier studies focused only on total metal concentrations in sediment and water. The objective of this study was to determine metal speciation (Fe, Cr, Ni, Zn, Cu, Pb, Cd) in the (operationally defined) sediment chemical fractions and metal speciation in reservoir water. This would reflect on metal bioavailability and toxicity. Water samples and bed sediments were collected from nine sites during the dry season and a sequential chemical fraction scheme was applied to the <75-??m sieve sediment fraction. Metal content in each fraction was determined by the FAAS technique. The data showed that the highest percentages of total metal content in sediment fractions were for: Fe in residual followed by reducible, Cr and Ni in residual and in reducible, Cu in organic followed by exchangeable, Zn in residual and in organic, Pb in organic and carbonate, Cd was mainly in carbonate. Total metal content in water was determined by ICP-MS technique and aqueous metal speciation was predicted using AQUACHEM software interfaced to PHREEQC geochemical computer model. The water speciation data predicted that a high percentage of Pb and Ni were present as carbonate complex species and low percentages as free hydrated ions, highest percentage of Zn as carbonate complex species followed by free hydrated ion, highest percentage of Cd as free hydrated ion followed by carbonate complex species. The sensitivity attempt of free hydrated ion of Ni, Zn, Pb, and Cd in reservoir water revealed dependence of Zn and Cd on pH and alkalinity, while Ni and Pb were only dependent on pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号