首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Jung B  Batchelor B 《Chemosphere》2008,71(4):726-734
Transformation of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA) by Fe(II) in 10% cement slurries was characterized using a batch reactor system. 1,1,2,2-TeCA was completely converted to trichloroethylene (TCE) within 1h in all experiments, even in controls with cement that did not include Fe(II). Therefore, complete degradation of 1,1,2,2-TeCA depends on the behavior of TCE. The half-life of TCE was observed to be 15d when concentrations of Fe(II) and 1,1,2,2-TeCA were 98mM and 0.245mM, respectively. The kinetics of TCE removal was observed to be dependent on Fe(II) dose, pH and initial substrate concentration. Pseudo-first-order rate constants linearly increased with Fe(II) dose up to 198mM when initial target concentration was 0.245mM. Pseudo-first-order kinetics generally described the degradation reactions of TCE at a specific initial concentration, but a modified Langmuir-Hinshelwood model was necessary to describe the degradation kinetics of TCE over a wide range of initial concentrations. A surface reaction of TCE on active solids, which were formed from Fe(II) and products of cement hydration appears to control observed TCE degradation kinetics.  相似文献   

2.
Chen YM  Lin TF  Huang C  Lin JC 《Chemosphere》2008,72(11):1671-1680
Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (<2 mg l(-1)), the models with or without self-inhibition of non-growth substrate both simulated the experimental data well. However, at higher TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.  相似文献   

3.
Che H  Lee W 《Chemosphere》2011,82(8):1103-1108
Selective redox degradation of chlorinated aliphatics by Fenton reaction in pyrite suspension was investigated in a closed system. Carbon tetrachloride (CT) was used as a representative target of perchlorinated alkanes and trichloroethylene (TCE) was used as one of highly chlorinated alkenes. Degradation of CT in Fenton reaction was significantly enhanced by pyrite used as an iron source instead of soluble Fe. Pyrite Fenton showed 93% of CT removal in 140 min, while Fenton reaction with soluble Fe(II) showed 52% and that with Fe(III) 15%. Addition of 2-propanol to the pyrite Fenton system significantly inhibited degradation of TCE (99% to 44% of TCE removal), while degradation of CT was slightly improved by the 2-propanol addition (80-91% of CT removal). The result suggests that, unlike oxidative degradation of TCE by hydroxyl radical in pyrite Fenton system, an oxidation by the hydroxyl radical is not a main degradation mechanism for the degradation of CT in pyrite Fenton system but a reductive dechlorination by superoxide can rather be the one for the CT degradation. The degradation kinetics of CT in the pyrite Fenton system was decelerated (0.13-0.03 min−1), as initial suspension pH decreased from 3 to 2. The formation of superoxide during the CT degradation in the pyrite Fenton system was observed by electron spin resonance spectroscopy. The formation at initial pH 3 was greater than that at initial pH 2, which supported that superoxide was a main reductant for degradation of CT in the pyrite Fenton system.  相似文献   

4.
Trichloroethylene (TCE) is one of the most hazardous organic pollutants in groundwater. Biochar produced from agricultural waste materials could serve as a novel carbonaceous adsorbent for removing organic contaminants from aqueous media. Biochars derived from pyrolysis of soybean stover at 300 °C and 700 °C (S-300 and S-700, respectively), and peanut shells at 300 °C and 700 °C (P-300 and P-700, respectively) were utilized as carbonaceous adsorbents to study batch aqueous TCE remediation kinetics. Different rate-based and diffusion-based kinetic models were adopted to understand the TCE adsorption mechanism on biochars. With an equilibrium time of 8–10 h, up to 69 % TCE was removed from water. Biochars produced at 700 °C were more effective than those produced at 300 °C. The P-700 and S-700 had lower molar H/C and O/C versus P-300 and S-300 resulting in high aromaticity and low polarity accompanying with high surface area and high adsorption capacity. The pseudo-second order and intraparticle diffusion models were well fitted to the kinetic data, thereby, indicating that chemisorption and pore diffusion were the dominating mechanisms of TCE adsorption onto biochars.  相似文献   

5.
In situ chemical oxidation (ISCO) is considered a reliable technology to treat groundwater contaminated with high concentrations of organic contaminants. An ISCO oxidant, persulfate anion (S(2)O(8)(2-)) can be activated by ferrous ion (Fe(2+)) to generate sulfate radicals (E(o)=2.6 V), which are capable of destroying trichloroethylene (TCE). The property of polarity inhibits S(2)O(8)(2-) or sulfate radical (SO(4)(-)) from effectively oxidizing separate phase TCE, a dense non-aqueous phase liquid (DNAPL). Thus the oxidation primarily takes place in the aqueous phase where TCE is dissolved. A bench column study was conducted to demonstrate a conceptual remediation method by flushing either S(2)O(8)(2-) or Fe(2+) through a soil column, where the TCE DNAPL was present, and passing the dissolved mixture through either a Fe(2+) or S(2)O(8)(2-) fluid sparging curtain. Also, the effect of a solubility enhancing chemical, hydroxypropyl-beta-cyclodextrin (HPCD), was tested to evaluate its ability to increase the aqueous TCE concentration. Both flushing arrangements may result in similar TCE degradation efficiencies of 35% to 42% estimated by the ratio of TCE degraded/(TCE degraded+TCE remained in effluent) and degradation byproduct chloride generation rates of 4.9 to 7.6 mg Cl(-) per soil column pore volume. The addition of HPCD did greatly increase the aqueous TCE concentration. However, the TCE degradation efficiency decreased because the TCE degradation was a lower percentage of the relatively greater amount of dissolved TCE by HPCD. This conceptual treatment may serve as a reference for potential on-site application.  相似文献   

6.
Influence of pH on persulfate oxidation of TCE at ambient temperatures   总被引:10,自引:0,他引:10  
Liang C  Wang ZS  Bruell CJ 《Chemosphere》2007,66(1):106-113
In situ chemical oxidation (ISCO) is a technology used for groundwater remediation. This laboratory study investigated the use of the oxidant sodium persulfate for the chemical oxidation of trichloroethylene (TCE) at near ambient temperatures (10, 20 and 30 degrees C) to determine the influence of pH (pH=4, 7 and 9) on the reaction rate (i.e., pseudo-first-order rate constants) over the range of temperatures utilized. TCE solutions (60 mg l(-1); 0.46 mM) were prepared in phosphate buffered RO water and a fixed persulfate/TCE molar ratio of 50/1 was employed in all tests. Half-lives of TCE degradation at 10, 20 and 30 degrees C (pH 7) were 115.5, 35.0 and 5.5h, respectively. Maximum TCE degradation occurred at pH 7. Lowering system pH resulted in a greater decrease in TCE degradation rates than increasing system pH. Radical scavenging tests used to identify predominant radical species suggested that the sulfate radical (SO(4)(.-)) predominates under acidic conditions and the hydroxyl radical (.OH) predominates under basic conditions. In a side by side comparison of TCE degradation in a groundwater vs. unbuffered RO water it was demonstrated that when the system pH is buffered to near neutral pH conditions due to the presence of natural occurring groundwater constituents that the TCE degradation rate is higher than in unbuffered RO water where the system pH dropped from 5.9 to 2.8. The results of this study suggest that in a field application of ISCO, pH should be monitored and adjusted to near neutral if necessary.  相似文献   

7.
The biosorprion and biodegradation of trichloroethylene (TCE) was investigated. The experimental results showed that at 25°C the adsorption equilibrium of TCE at concentrations from 10 mg/L to 200 mg/L could be described by the Freundlich isotherm. Adsorption could complete within 15 min. Results indicated that glucose could serve as a co-substrate and enhance TCE biodegradation through co-metabolism. The TCE biodegradation conformed to the first-order reaction kinetic, and the rate constant was 0.3212 day−1 at 25°C. In addition, results also indicated that TCE could serve as the sole substrate and be biodegraded under aerobic condition. No intermediate products such as DCE and VC were accumulated during the degradation.  相似文献   

8.
Biodegradation of the polychlorinated naphthalenes (PCNs) 1,4-dichloronaphthalene (1,4-DCN), 2,7-dichloronaphthalene (2,7-DCN), and 1,2,3,4-tetrachloronaphthalene (1,2,3,4-TCN), by the white-rot fungus Phlebia lindtneri was investigated. 1,4-DCN was metabolized to form six metabolites by the fungus. It was estimated from GC–MS fragment patterns that the metabolites were four putative hydroxylated and two dihydrodihydroxylated compounds. One of the hydroxylated products was identified as 2,4-dichloro-1-naphthol by GC–MS analysis using an authentic standard. This intermediate indicated chlorine migration in a biological system of P. lindtneri. 2,7-DCN was metabolized to five hydroxylated metabolites and a dihydrodihydroxylated metabolite. Significant inhibition of the degradation of DCNs and formation of their metabolic products was observed in incubation with the cytochrome P-450 monooxygenase inhibitor piperonyl butoxide. The formation of the dihydrodiol-like metabolites, chlorine migration and the experiment with P-450 inhibitor suggested that P. lindtneri provides hydroxyl metabolites via benzene oxide intermediates of DCNs by a cytochrome P450 monooxygenase. In addition, P. lindtneri degraded 1,2,3,4-TCN; two hydroxylated compounds and a dihydrodihydroxylated compound were formed.  相似文献   

9.
Toluene dioxygenase (tod) is a multicomponent enzyme system in Pseudomonas putida F1. Tod can mediate the degradation of Trichloroethylene (TCE), a widespread pollutant. In this study, we try to explore the TCE-regulated tod expression by using real-time qRT-PCR. The minimal culture media were supplemented with glucose, toluene, or a mixture of glucose/toluene respectively as carbon and energy sources. The TCE was injected into each medium after a 12-hour incubation period. The TCE injection severely affected bacterial growth when cultured with toluene or toluene/glucose mixtures. The cell density dropped 61 % for bacteria growing in toluene and 36 % for bacteria in the glucose/toluene mixture after TCE injection, but the TCE treatment had little effect on bacteria supplied with glucose alone. The decrease in cell number was caused by the cytotoxicity of the TCE metabolized by tod. The results from the real-time qRT-PCR revealed that TCE was capable of inducing tod expression in a toluene-dependent manner and that the tod expression level increased 50 times in toluene and 3 times in the toluene/glucose mixture after 6 hours of TCE treatment. Furthermore, validation of the rpoD gene as a reference gene for P. putida F1 was performed in this study, providing a valuable foundation for future studies to use real-time qRT-PCR in the analysis of the P. putida F1 strain.  相似文献   

10.
Li Z 《Chemosphere》2004,54(3):419-423
Oxidative dechlorination of chlorinated solvents by permanganate is an emerging technology for remediation of groundwater contaminated with dissolved chlorinated contaminants. In this study, the enhancement of trichloroethylene (TCE) degradation by permanganate in aqueous solution in the presence of surfactant was evaluated through a continuous stir batch reactor system with the presence of permanganate as the limiting reagent and free phase TCE. The TCE degradation was determined by continuous monitoring the amount of chloride produced, which was then reverted to the rate of permanganate consumption. It was found that the chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO(4) in the presence of free phase TCE. When no surfactants were present, the observed pseudo-first-order rate constant (k(obs)) was 0.08-0.19 min(-1) and the half-life (t(1/2)) was 4-9 min for MnO(4)(-). When the surfactant concentration was less than its critical micelle concentration (CMC), the k(obs) values increased to 0.42-0.46 min(-1) and the t(1/2) reduced to 1.5-1.7 min for MnO(4)(-). As the surfactant concentration was greater than the CMC, the k(obs) values increased to 0.56-0.58 min(-1) and the t(1/2) reduced to 1.2-1.3 min. The preliminary results showed that combination of permanganate with a proper type of surfactant can speed up contaminant removal.  相似文献   

11.
Toluene dioxygenase (tod) is a multicomponent enzyme system in Pseudomonas putida F1. Tod can mediate the degradation of Trichloroethylene (TCE), a widespread pollutant. In this study, we try to explore the TCE-regulated tod expression by using real-time qRT-PCR. The minimal culture media were supplemented with glucose, toluene, or a mixture of glucose/toluene respectively as carbon and energy sources. The TCE was injected into each medium after a 12-hour incubation period. The TCE injection severely affected bacterial growth when cultured with toluene or toluene/glucose mixtures. The cell density dropped 61 % for bacteria growing in toluene and 36 % for bacteria in the glucose/toluene mixture after TCE injection, but the TCE treatment had little effect on bacteria supplied with glucose alone. The decrease in cell number was caused by the cytotoxicity of the TCE metabolized by tod. The results from the real-time qRT-PCR revealed that TCE was capable of inducing tod expression in a toluene-dependent manner and that the tod expression level increased 50 times in toluene and 3 times in the toluene/glucose mixture after 6 hours of TCE treatment. Furthermore, validation of the rpoD gene as a reference gene for P. putida F1 was performed in this study, providing a valuable foundation for future studies to use real-time qRT-PCR in the analysis of the P. putida F1 strain.  相似文献   

12.
The suitability of a granulated zero valent iron (ZVI) permeable reactive barrier (PRB) remediation strategy was investigated for tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE) and vinyl bromide (VB), via batch and large-scale column experiments that were subsequently analysed by reactive transport modelling.The brominated ethenes in both batch and large-scale column experiments showed rapid (compared to controls and natural attenuation) degradation in the presence of ZVI. In the large-scale column experiment, degradation half-lives were 0.35 days for TriBE, 0.50 days for c-DBE, 0.31 days for t-DBE and 0.40 days for VB, under site groundwater flow conditions, resulting in removal of brominated ethenes within the first 0.2 m of a 1.0 m thick ZVI layer, indicating that a PRB groundwater remediation strategy using ZVI could be used successfully.In the model simulations of the ZVI induced brominated ethene degradation, assuming a dominant reductive β-elimination pathway via bromoacetylene and acetylene production, simulated organic compound concentrations corresponded well with both batch and large-scale column experimental data. Changes of inorganic reactants were also well captured by the simulations. The similar ZVI induced degradation pathway of TriBE and TCE suggests that outcomes from research on ZVI induced TCE remediation could also be applied to TriBE remediation.  相似文献   

13.
三氯乙烯(trichloroethylene,TCE)是土壤和地下水中广泛存在的有机污染物,好氧生物降解因可将污染物彻底转化成无毒的终产物,一直受到广泛关注,但是TCE好氧降解需要共代谢底物。首次提出以汽油为底物,选取真养产碱杆菌作为活性降解菌株,对地下水中三氯乙烯的好氧共代谢降解进行了初步研究。分别优化了共代谢底物、底物与TCE浓度比、培养基、pH值、盐度、溶解氧等条件,确定了最佳降解条件。当水中TCE的浓度为1 mg/L时,通过对体系预曝氧气,调节汽油浓度为10 mg/L,pH值为5,降解24 h,TCE的降解率可达66.8%。为修复同时被汽油和TCE污染的场地提供了一个新的研究方向。  相似文献   

14.
Flow-through column tests were conducted to investigate the performance of iron wall remediation systems for the degradation of aqueous-phase trichloroethylene (TCE). Concentration profiles under steady-state transport conditions were generated by measuring TCE concentrations at sample ports located at various locations along the length of the column. The results indicated that a pseudo-first-order model is adequate at describing degradation kinetics for low initial TCE concentrations, but not for higher initial concentrations. The deviation from pseudo-first-order kinetics can be explained by interspecies competition for reactive sites between TCE and a dominant reaction product. A modification of the pseudo-first-order model that accounts for product interference predicts laboratory data for high initial concentration profiles, but deviates slightly as initial concentrations approach the solubility of TCE. The data clearly demonstrate the importance of accurately describing reaction kinetics for the purpose of designing iron wall treatment systems.  相似文献   

15.
In order to study the enzymatic mechanisms involved in the successive steps of BaP degradation by a Deuteromycete fungus Fusarium solani, we developed an indirect approach by using inhibitors of enzymes. We used either specific inhibitors of peroxidases (i.e. salicylhydroxamic acid) and of cytochrome P-450 (i.e. piperonyl butoxyde) or inhibitors of both enzymes (i.e. potassium cyanide). Surprisingly, no expected decrease of BaP degradation was observed with most inhibitors tested. On the contrary, more BaP was degraded. Only butylated hydroxytoluene, which acts as a free radical scavenger, inhibited BaP degradation. The inhibition of these enzymes, which use H(2)O(2) as a cosubstrate, might have resulted in an increase of hydrogen peroxide availability in the fungal cultures. This enhancement could induce formation of reactive oxygen species (ROS) which might be the agents that initiate benzo[a]pyrene oxidation. This study proposed a hypothetic alternative metabolic pathway involved in PAH metabolism by Fusarium solani.  相似文献   

16.
Petersen MA  Sale TC  Reardon KF 《Chemosphere》2007,67(8):1573-1581
Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.  相似文献   

17.
A methodology to study the trichloroethylene (TCE) and dodecane removal in porous media by surfactant foams (SF) was presented by using etched-glass micromodels. The purpose of this work was to systematically evaluate the impact of various physicochemical factors such as gas fraction (GF), surfactant concentration, pore structure and nonaqueous phase liquid (NAPL) types on NAPL removal during SF flooding. The TCE displacement by SF was dependent on the gas fraction of SF. Low GFs (50% and 66%) were more efficient for TCE removal and sweep efficiencies than a high GF (85%). An increase in TCE removal was observed with increasing surfactant concentration at a fixed GF. TCE removal by SF flooding appeared to be dependent more to the value of Capillary number rather than to the concentration of surfactant solution. The effect of the pore heterogeneity was evaluated by employing two different types of micromodels. The Capillary number is an important parameter in the determination of sweep efficiency or gas saturation of SF in a nonhomogeneous porous medium. However, the TCE removal from a nonhomogeneous porous medium may not be associated with sweep efficiency. The initial configuration of residual TCE blobs in a nonhomogeneous porous medium would also be influential in displacing TCE. Sweep efficiencies and pressure responses of two NAPL systems (TCE and dodecane) were monitored to evaluate foam stability when the foam contacts the NAPLs. Stable foam contacting with TCE is implied, while it appears that dodecane cause the SF to collapse. All results indicate that the Capillary number (a ratio of viscous forces to capillary forces) is the most important parameter for TCE removal by SF flooding. Micromodel visualizations of water, surfactant and SF floods were showed and also discussed.  相似文献   

18.
The successful dechlorination of mixtures of chlorinated hydrocarbons with zero-valent metals requires information concerning the kinetics of simultaneous degradation of different contaminants. This includes intraspecies competitive effects (loading of the reactive iron surface by a single contaminant) as well as interspecies competition of several contaminants for the reactive sites available. In columns packed with zero-valent iron, the degradation behaviour of trichloroethylene (TCE), cis-dichloroethylene (DCE) and mixtures of both was measured in order to investigate interspecies competition. Although a decreasing rate of dechlorination is to be expected, when several degradable substances compete for the reactive sites on the iron surface, TCE degradation is nearly unaffected by the presence of cis-DCE. In contrast, cis-DCE degradation rates decrease significantly when TCE is added. A new modelling approach is developed in order to identify and quantify the observed competitive effects. The numerical model TBC (Transport, Biochemistry and Chemistry, Sch?fer et al., 1998a) is used to describe adsorption, desorption and dechlorination in a mechanistic way. Adsorption and degradation of a contaminant based on a limited number of reactive sites leads to a combined zero- and first-order degradation kinetics for high and low concentrations, respectively. The adsorption of several contaminants with different sorption parameters to a limited reactive surface causes interspecies competition. The reaction scheme and the parameters required are successfully transferred from Arnold and Roberts (2000b) to the model TBC. The degradation behaviour of the mixed contamination observed in the column experiments can be related to the adsorption properties of TCE and cis-DCE. By predicting the degradation of the single substances TCE and cis-DCE as well as mixtures of both, the calibrated model is used to investigate the effects of interspecies competition on the design of permeable reactive iron barriers. Even if TCE is present in only small concentrations (>3% of molar cis-DCE concentration) it is the contaminant limiting the residence time and the required thickness of the iron barrier.  相似文献   

19.
A multi-dimensional and multi-species reactive transport model was developed to aid in the analysis of natural attenuation design at chlorinated solvent sites. The model can simulate several simultaneously occurring attenuation processes including aerobic and anaerobic biological degradation processes. The developed model was applied to analyze field-scale transport and biodegradation processes occurring at the Area-6 site in Dover Air Force Base, Delaware. The model was calibrated to field data collected at this site. The calibrated model reproduced the general groundwater flow patterns, and also, it successfully recreated the observed distribution of tetrachloroethene (PCE), trichloroethene (TCE), dichloroethylene (DCE), vinyl chloride (VC) and chloride plumes. Field-scale decay rates of these contaminant plumes were also estimated. The decay rates are within the range of values that were previously estimated based on lab-scale microcosm and field-scale transect analyses. Model simulation results indicated that the anaerobic degradation rate of TCE, source loading rate, and groundwater transport rate are the important model parameters. Sensitivity analysis of the model indicated that the shape and extent of the predicted TCE plume is most sensitive to transmissivity values. The total mass of the predicted TCE plume is most sensitive to TCE anaerobic degradation rates. The numerical model developed in this study is a useful engineering tool for integrating field-scale natural attenuation data within a rational modeling framework. The model results can be used for quantifying the relative importance of various simultaneously occurring natural attenuation processes.  相似文献   

20.
通过批实验和柱实验研究了三氯乙烯(TCE)初始浓度、四氯乙烯(PCE)等对零价铁去除三氯乙烯的影响,并建立了三氯乙烯降解的反应动力学方程。结果表明:(1)零价铁对TCE具有较好的降解效果,反应符合准一级反应动力学方程,表观反应速率常数随TCE浓度的增加而减小;(2)在铁粉充足的条件下,TCE初始浓度对降解效果影响不显著,且TCE去除率皆可达到90%以上;(3)PCE的存在抑制了TCE的脱氯反应。PCE和TCE共存时,TCE的最大去除率仅为64.2%;TCE脱氯反应的表观反应速率明显降低,反应半衰期由TCE单独存在时的6.8~9.7 h增大到66 h~346.5 h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号