首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first- and second-order streams, Brown and Horqueta, respectively, which are located in the main area of soybean production in Argentina were examined for insecticide contamination caused by runoff from nearby soybean fields. The insecticides most widely used in Argentina (chlorpyrifos, cypermethrin and endosulfan) were detected in sediments, suspended particles and water. Highest concentrations in suspended particles were 318 microg/kg for endosulfan in the stream Horqueta, while 226 microg/kg chlorpyrifos and 13.2 microg/kg cypermethrin were measured in the stream Brown. In the Horqueta stream 150 and 53 microg/kg chlorpyrifos and cypermethrin were detected in runoff sediments, respectively. Whereas cypermethrin concentrations in the suspended particles were relatively low, levels in the floodwater of Brown reached 0.7 microg/l. The highest chlorpyrifos concentration in floodwater was 0.45 microg/l in Brown. However, endosulfan was not detected in the water phase. In runoff water the highest concentrations measured were 0.3 microg/l for chlorpyrifos in Horqueta and 0.49 microg/l for cypermethrin in the Brown stream. On five sampling dates during the pesticide application period in Brown stream (2002/2003) the concentration of chlorpyrifos and cypermethrin in runoff and/or floodwater exceeded the water quality criteria for freshwater mentioned in this study. In three cases this insecticide concentration was measured in stream water, indicating an acute risk to aquatic life. The acute toxicity-exposure-ratio (TER) for chlorpyrifos and cypermethrin also shows an acute risk for aquatic invertebrates in the Brown stream. In the Horqueta chlorpyrifos concentrations in the runoff exceeded the safety levels three times during the application period (2001/2002), potentially endangering the aquatic fauna. Effects on aquatic macroinvertebrates after insecticide contamination were reported in earlier studies in Horqueta stream.  相似文献   

2.
Sardar D  Kole RK 《Chemosphere》2005,61(9):1273-1280
A laboratory experiment was conducted to study the persistence and metabolism of chlorpyrifos in Gangetic Alluvial soil of West Bengal and also to evaluate their effect on the availability of the major plant nutrients (N, P and K) in soil following the application of chlorpyrifos @ 1 kg (T1), 10 kg (T2) and 100 kg (T3) a.i.ha(-1). The dissipation followed first order kinetics and the calculated half-life (T1/2) values ranged from 20 to 37 days. The primary metabolite of chlorpyrifos, 3,5,6-trichloropyridinol (TCP) was detected from 3rd day after application and was at maximum on 30th day which decreased progressively to non-detectable level (NDL) on 120th day for all the treatment doses. The secondary metabolite 3,5,6-trichloro-2-methoxy pyridine (TMP) was detected on 30th, 15th and 7th day in T1, T2 and T3 doses respectively which decreased to NDL during 90-120th day. ANOVA study revealed significant decrease in the available N and P content in soil treated with chlorpyrifos in comparison to the control set. The inhibitory effect on available N was attributable to TMP and for P it was due to the presence of TCP and TMP rather than chlorpyrifos itself as revealed by the step wise multiple regression technique. In the later stage of incubation, however the average N and P status was recovered significantly at 120 days which might be due to the disappearance of the metabolites. The variation due to time of observations or treatment doses was minimum in case of available K in soil.  相似文献   

3.
A 180 d laboratory experiment was conducted to investigate the degradation rates of chlorpyrifos (10 and 50 mg kg(-1)) and metalaxyl (100 mg kg(-1)) separately and co-applied in a biomix constituted by topsoil, vine-branches and urban-waste-garden compost. The effect of repeated application of metalaxyl was also investigated. Microbial biomass-C (MBC) content and metabolic quotient (qCO(2)) were measured to evaluate changes in microbial biomass size and activity induced by the presence of the two pesticides. Degradation rate decreased with increasing concentration of chlorpyrifos in all treatments. Metalaxyl half-life was significantly reduced in co-application with chlorpyrifos indicating a synergic interaction between the two pesticides in favour of enhanced degradation rate for metalaxyl but not for chlorpyrifos. Furthermore, repeated application resulted in a sharp reduction of metalaxyl half-life from 37 d after first application to 4 d after third application. MBC content was negatively influenced by the addition of pesticides but it started to recover immediately, in both separate and co-applied treatments, reaching the control value when pesticide residues were about 50% of the initial concentration. The qCO(2) reached a steady-state after about 20 d in separately applied and 40 d in co-applied treatments, indicating a tendency to arrive at a new metabolic equilibrium. In conclusion, the biomix tested has been shown to degrade pesticides relatively fast and to have a microbial community that is varied enough to allow selection of those microorganisms able to degrade metalaxyl and chlorpyrifos.  相似文献   

4.
Wang L  Jiang X  Yan D  Wu J  Bian Y  Wang F 《Chemosphere》2007,66(3):391-396
The effect of chlorpyrifos added in irrigation water to a red soil from Central South China on the growth of wheat and oilseed rape seedlings, together with its uptake, was studied in a pot experiment. Addition of chlorpyrifos (1-10 microg g-1) in a single irrigation with distilled water resulted in absorption of chlorpyrifos by wheat (0.257-4.50 microg g-1) and also oilseed rape seedlings (0.249-2.02 microg g-1) during 20 d of plant growth. An initial concentration of chlorpyrifos in soil that is equivalent to or below 10 microg g-1 did not significantly influence the growth of wheat seedlings. Similarly, an initial concentration equivalent to or below 5 microg g-1 did not significantly influence the growth of oilseed rape seedlings. The degradation rate of chlorpyrifos was 1.4-4.2 times larger in oilseed rape rhizosphere soil than in unvegetated soil. The numbers of bacteria and fungi in oilseed rape rhizosphere soil were 3.18 times and 1.84 times larger, respectively, than those in unvegetated soil. This helps to explain the difference in degradation rates obtained.  相似文献   

5.
In this study, a correction was developed for the aethalometer to measure real-time black carbon (BC) concentrations in an environment dominated by fresh diesel soot. The relationship between the actual mass-specific absorption coefficient for BC and the BC-dependent attenuation coefficients was determined from experiments conducted in a diesel exposure chamber that provided constant concentrations of fine particulate matter (PM; PM(2.5); PM < 2.5 microm in aerodynamic diameter) from diesel exhaust. The aethalometer reported BC concentrations decreasing with time from 48.1 to 31.5 microg m(-3) when exposed to constant PM(2.5) concentrations of 55 +/- 1 microg m(-3) and b(scat) = 95 +/- 3 Mm(-1) from diesel exhaust. This apparent decrease in reported light-absorbing PM concentration was used to derive a correction K(ATN) for loading of strong light-absorbing particles onto or into the aethalometer filter tape, which was a function of attenuation of light at 880 nm by the embedded particles.  相似文献   

6.
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

7.
Abstract

Biodegradation of chlorpyrifos was studied in liquid culture media amended with either single or combined eight different plant pathogenic fungi isolated from the continuous cropping wheat fields. The average recovery of chlorpyrifos from the liquid media was found to be 86.1%. The detection limit of chlorpyrifos by the analytical method used was 19 ppb. Data showed that the growth of mixed fungi at concentrations up to 200 ppm of chlorpyrifos was higher than in the control treatment. Chlorpyrifos concentrations declined in the medium of combined fungi more than it did in the medium of any single fungus with increase in the incubation period. The amount of chlorpyrifos recovered was 79.8 ppm (39.9%) in the combined fungal cultures after 21 days. However, those recovered from the media of Fusarium graminearum, F. oxysporum, Rhizoctonia solani, Cladosporhim cladosporiodes, Cephalosporium sp., Trichoderma viridi, Alternaria alternata, and Cladorrhinum brunnescens, ranged from 48.0 to 74.8%. The half‐life value (T1/2) for chlorpynfos was 15.8 day in the medium amended with mixed fungi. However, for the single cultures it ranged from 19.3 to 33.0 day.  相似文献   

8.
Chlorpyrifos (Lorsban emulsifiable concentrate) was applied at 3.4 kg AI/ha and incorporated into sand and muck soil contained in small field plots. Soil samples were taken at intervals over 2 yr. Radishes and carrots, seeded yearly, served as indicator crops for absorption of insecticide residues. Samples were extracted and analyzed, by gas-liquid chromatography, for chlorpyrifos, oxychlorpyrifos, and 3,5,6-trichloro-2-pyridinol. Chlorpyrifos residues declined rapidly, with 50% of the initial application remaining after 2 and 8 wk in sand and muck, respectively, and 4 and 9% after 1 yr. Pyridinol residues increased to 13 and 39% of the initial chlorpyrifos application in sand and muck after 1 and 8 wk, respectively, and declined thereafter. Oxychlorpyrifos was detected in the 2 soils at very low levels only in immediate posttreatment samples. In the first year of the study low levels (less than 0.1 ppm) of chlorpyrifos and the pyridinol were detected in radishes and carrots.  相似文献   

9.
Chlorpyrifos degradation in Turkish soil   总被引:12,自引:0,他引:12  
Degradation of chlorpyrifos was evaluated in laboratory studies. Surface (0-15 cm) and subsurface (40-60 cm) clay loam soils from a pesticide-untreated field were incubated in biometer flasks for 97 days at 25 degrees C. The treatment was 2 micrograms g-1 [2,6-pyridinyl-14C] chlorpyrifos, with 74 kBq radioactivity per 100 g soil flask. Evolved 14CO2 was monitored in KOH traps throughout the experiment. Periodically, soil subsamples were also methanol-extracted [ambient shaking, then supercritical fluid extraction (SFE)], then analyzed by thin-layer chromatography. Total 14C and unextractable soil-bound 14C residues were determined by combustion. From the surface and subsurface soils, 41 and 43% of the applied radiocarbon was evolved as 14CO2 during 3 months incubation. The time required for 50% loss of the parent insecticide in surface and subsurface soils was about 10 days. By 97 days, chlorpyrifos residues and their relative concentration (in surface/subsurface) as % of applied 14C were: 14CO2 (40.6/42.6), chlorpyrifos (13.1/12.4), soil-bound residues (11.7/11.4), and 3,5,6-trichloropyridinol (TCP) (3.8/4.8). Chlorpyrifos was largely extracted by simple shaking with methanol, whereas TCP was mainly removed only by SFE. The short persistence of chlorpyrifos probably relates to the high soil pH (7.9-8.1).  相似文献   

10.
Pandey S  Singh DK 《Chemosphere》2004,55(2):197-205
Short-term inhibitory effect on the total bacterial population was observed after chlorpyrifos and quinalphos applications in the groundnut fields, which recovered within 60 days after seed treatment and by 45 days of soil treatment. The fungal population was significantly enhanced after chlorpyrifos treatment whereas quinalphos inhibited the fungal population during the initial days of treatment but no effect was observed after 60 days of treatment. The residues of chlorpyrifos and quinalphos in the treated soil were not persistent and their half-lives ranged from 7.0 to 9.2 days and 13.2 to 20.6 days, respectively.  相似文献   

11.
Zushi Y  Takeda T  Masunaga S 《Chemosphere》2008,71(8):1566-1573
Products containing perfluorinated compounds (PFCs) have been widely used during the last 50 years. As a result, worldwide environmental pollution by PFCs has been reported. The sources of PFC pollution in the aquatic environment have been poorly understood. In this study, river water and sewage treatment plant (STP) effluent were sampled along the stretch of the Tsurumi River and also at a fixed station in the river. The concentrations of perfluorooctanesulfonate (PFOS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were measured. With an increase in river flow rate, it was observed that the PFC concentrations in the river water at fixed station were remained the same or increased for PFOS (179.9+/-34.4-179.6+/-69.5 ng l(-1)), PFHxA (5.5+/-0.8-9.0+/-2.6 ng l(-1)), PFHpA (3.1+/-0.3-4.4+/-1.0 ng l(-1)), and PFOA (15.9+/-0.3-13.4+/-2.5 ng l(-1)) whereas the concentration of PFNA (38.0+/-3.3-15.4+/-3.0 ng l(-1)) and PFDA (3.9+/-0.3-2.1+/-0.3 ng l(-1)) were decreased. On the other hand, the loads of every PFC increased with an increase in river flow rate. The loads of PFCs in rain runoff were estimated to be 2-11 times greater than those in STP effluents that are discharged into the river. These results indicate the existence of a PFC nonpoint source (NPS) and its impact to the total PFC load of river is significant.  相似文献   

12.
Mitigation of chlorpyrifos runoff using constructed wetlands   总被引:9,自引:0,他引:9  
Constructed wetlands have been proposed as a potential best management practice (BMP) to mitigate effects of pesticide-associated agricultural runoff. Wetland mesocosms (14 m x 59-73 m) were amended with chlorpyrifos to simulate a storm runoff event at concentrations of 73, 147 and 733 microg/l. Water, sediment and plant samples collected weekly for 12 weeks indicated that chlorpyrifos rapidly sorbed to sediment and plant material, with approximately 47-65% of measured chlorpyrifos mass retained within the first 30-36 m of wetland mesocosms. Of the measured mass, approximately 55% and 25% were retained by sediments and plants, respectively. A field-scale evaluation of a constructed wetland's mitigation capability was performed in the Lourens River watershed of Cape Town, South Africa. Results indicate that the wetland was able to retain and considerably decrease the concentration (and hence toxicity) of chlorpyrifos and suspended sediment entering the receiving waterbody (Lourens River). This research provides fundamental answers concerning constructed wetland capabilities that are necessary for constructing field-scale systems within agricultural watersheds.  相似文献   

13.
Filter light attenuation as a surrogate for elemental carbon   总被引:1,自引:0,他引:1  
Light attenuation (b(att)) measured from filter light transmission is compared with elemental carbon (EC) measurements for more than 180,000 collocated PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) and PM10 (PM < or = 10 microm in aerodynamic diameter) samples from nearly 200 U.S. locations during the past 2 decades. Although there are theoretical reasons for expecting highly variable relationships between b(att) and EC (such as the effects of "brown carbon" and iron oxides in PM2.5), reasonable correlations are found. These correlations are not a strong function of season or location (e.g., rural vs. urban). Median EC concentrations can be predicted from filter transmittance measurements to within +/- 15-30%. Although EC predicted from b(att) shows larger uncertainties (30-60%), especially at concentrations less than 0.3 microg/m3, the consistent mass absorption efficiency (sigm(att)) derived from the regression analysis demonstrates the feasibility of using b(att) as a surrogate for EC. This study demonstrates that a constant factor of 0.1 g/m2 (equivalent to the 10 m2/g sigma(att) used in the Interagency Monitoring of Protected Visual Environments chemical extinction formula) can be used to estimate EC concentrations from b(att) through a Teflon-membrane filter sample. Greater accuracy is achieved with site-specific sigma(att) derived from a period with collocated EC measurements.  相似文献   

14.
Although aldehydes contribute to ozone and particulate matter formation, there has been little research on the biofiltration of these volatile organic compounds (VOCs), especially as mixtures. Biofiltration degradation kinetics of an aldehyde mixture containing hexanal, 2-methylbutanal (2-MB), and 3-methylbutanal (3-MB) was investigated using a bench-scale, synthetic, media-based biofilter. The adsorption capacity of the synthetic media for a model VOC, 3-methylbutanal, was 10 times that of compost. Periodic residence time distribution analysis (over the course of 1 yr) via a tracer study (84-99% recovery), indicated plug flow without channeling in the synthetic media and lack of compaction in the reactor. Simple first-order and zero-order kinetic models both equally fit the experimental data, yet analysis of the measured rate constants versus fractional conversion suggested an overall first-order model was more appropriate. Kinetic analysis indicated that hexanal had a significantly higher reaction rate (k = 0.09 +/- 0.005 1/sec; 23 +/- 1.3 ppmv) compared with the branched aldehydes (k = 0.04 +/- 0.0036 1/sec; 31 +/- 1.6 ppmv for 2-MB and 0.03 +/- 0.0051 1/sec; 22 +/- 1.3 ppmv for 3-MB). After 3 months of operation, all three compounds reached 100% removal (50 sec residence time, 18-46 ppmv inlet). Media samples withdrawn from the biofilter and observed under scanning electron microscopy analysis indicated microbial growth, suggesting removal of the aldehydes could be attributed to biodegradation.  相似文献   

15.
Laabs V  Amelung W  Pinto A  Altstaedt A  Zech W 《Chemosphere》2000,41(9):1441-1449
Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.  相似文献   

16.
Abstract

After chlorpyrifos was applied to the basal 1 meter of elm tree trunks for control of elm bark beetles at two different application times and sites, initial chlorpyrifos residues in forest floor litter ranged from 120 to 916 μg/g depending on the application time. Residues dissipated by approximately 99% after 791 d with the DT50 from 3.9 to 59 d and DT90 from 55 to 310 d. The initial residues of chlorpyrifos in elm forest soil varied from 0.8 to 28 μg/g and were 1 to 2 μg/g at 791 d after application. The dissipation half‐lives of chlorpyrifos in fortified soil placed in the field ranged from 116 to 121 d.  相似文献   

17.
The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 103 cfu mL?1. During continuous treatment, 100% degradation was observed at 100 mL h?1 flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h?1 and 100 mL h?1 flow rate respectively. The products of degradation detected by liquid chromatography–mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.  相似文献   

18.
Asselin M  Drogui P  Benmoussa H  Blais JF 《Chemosphere》2008,72(11):1727-1733
Slaughterhouse wastewaters contain varied and high amounts of organic matter (e.g., proteins, blood, fat). In order to produce an effluent suitable for stream discharge, electrochemical techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from poultry slaughterhouse (PS) effluent. Electrocoagulation (EC) process was tested using either mild steel or aluminium electrodes arranged in bipolar (BP) or monopolar configuration system. Results showed that the best performance was obtained using mild steel BP electrode system operated at a current intensity of 0.3A, through 60 or 90 min of treatment. Under these conditions, removals of 86+/-1% and 99+/-1% were measured for BOD and oil and grease, respectively, whereas soluble COD and total COD were removed by 50+/-4% and 82+/-2%, respectively. EC is also efficient for decolorization (red-color) and clarification of the PS effluent. Removals of 89+/-4% and 90+/-4% have been measured for total suspended solids and turbidity, respectively. Electrochemical coagulation operated under the optimal conditions involves a total cost of 0.71 USD $ per cubic meter of treated PS effluent. This cost includes energy and electrode consumptions, chemicals, and sludge disposal.  相似文献   

19.
We designed a soil carbon monitoring system for New Zealand using country-specific land use and soil carbon information. The system pre-stratifies the country by soil type, climate, and land use. Soils were placed in six IPCC soil categories; Podzols were added as they are widespread throughout New Zealand. Temperature was stratified into two categories, each spanning 7 degrees C. Moisture categories were based on water balance, and included five categories. Temperature and moisture stratification was based on the USDA Soil Classification system. Land use (10 categories) was based on 1980s survey data. Overall, 39 combinations of these three factors (cells) described 93% of the New Zealand landscape. Geo-referenced soil carbon data (carbon concentration and bulk density) were used to quantify average soil carbon for each of the 39 cells. Aggregating the polygons gave an estimated 1990 soil carbon baseline of 1152+/-44, 1439+/-73, and 1602+/-167 Mt C (mean+/-S.D.) for the 0-0.1, 0.1-0.3, and 0.3-1.0 m depth increments (not including forest floor carbon). The system described could also be used to quantify equilibrium changes in soil C associated with land-use change if land use is updated periodically.  相似文献   

20.
Geraedts K  Maes A 《Chemosphere》2008,73(4):491-497
The interaction between colloidal Tc(IV) species and colloidal Gorleben humic substances (HS) was quantified after application of the La-precipitation method on supernatant solutions obtained under various experimental conditions but at constant ionic strength of the Gorleben groundwater (0.04M). The determined interaction constant LogK(HS) (2.3+/-0.3) remained unchanged over a large range of Tc(IV) and HS concentrations and was independent of the pH of the original supernatant solution (pH range 6-10), Tc(IV)-HS loading (10(-3)-10(-6)molTcg(-1) HS) and the nature of the reducing surface (Magnetite, Pyrite and Gorleben sand) used for the pertechnetate reduction. The LogK(HS) value determined by the La-precipitation method is lower than the LogK value obtained from a previous study where the interaction between colloidal Tc(IV) species and Gorleben humic substances was quantified using a modified Schubert approach (2.6+/-0.3). The La-precipitation method allows to accurately determine the amount of Tc(IV) associated with HS but leads to a (small) overestimation of the free inorganic Tc(IV) species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号