首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

2.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

3.
This work presents the last phase of long-term experimental studies on the biodegradation in soil behaviour of polymers destined for agricultural applications. The paper focuses on comparative studies between the biodegradation in soil behaviour of two important biodegradable polymers based on renewable resources: poly(lactic acid) (PLA) versus polyhydroxyalkanoates (PHA). Full-scale experiments were carried out during the period June 2008–January 2009. Different methods of exposure were applied in the case of polyhydroxyalkanoates, simulating the agricultural biodegradable mulching films use and their fate in soil after the end of their useful lifetime. The field results were compared with the results of biodegradation under controlled laboratory conditions simulating biodegradation in soil, using soil from the experimental field. Further, the field results were compared against the results of biodegradation under farm composting conditions.  相似文献   

4.
The biodegradation of polyethylene-chitin (PE-chitin) and polyethylene-chitosan (PE-chitosan) films, containing 10% by weight chitin or chitosan, by pure microbial cultures and in a soil environment was studied. Three soil-inhabited organsims,Serratia marcescens, Pseudomonas aeruginosa, andBeauveria bassiana were able to utilize chitin and chitosan in prepared PE-chitin and PE-chitosan films after eight weeks of incubation at 25°C in a basal medium containing no source of carbon or nitrogen. In a soil environment, the biodegradation of those films was studied and compared with a commercial biodegradable film containing 6% by the weight of corn starch. In soil placed in the lab, 73.4% of the chitosan and 84.7% of the chitin in the films were degraded, while 46.5% of the starch in the commercial film was degraded after six months of incubation. In an open field, 100% of the chitin and 100% of the chitosan in the films were degraded, but only 85% of the starch in the commercial film was degraded after six months of incubation. The weight of controls, (polyethylene films), remained mainly stable during the incubation period. Both PE-chitin and PE-chitosan films degraded at a higher rate than the commercial starch-based film in a soil environment indicating the potential use of chitin-based films for the manufacturing of biodegradable packaging materials.  相似文献   

5.
The biodegradabilities of various plastics by anaerobic digested sludge were measured and compared with the biodegradabilities under simulated landfill conditions. Bacterial poly(3-hydroxy-butyrate-co-3-hydroxyvalerate) (PHB/HV; 92/8, w/w), a natural aliphatic polyester, degraded nearly to completion within 20 days of cultivation by anaerobic digested sludge, while synthetic aliphatic polyesters such as poly-lactic acid, poly(butylene succinate), and poly (butylene succinate-co-ethylene succinate) did not degrade at all in 100 days. Cellophane, which was used as a control material, exhibited a similar degradation behavior to PHB/HV. Under simulated landfill conditions, PHB/HV degraded quite well within 6 months. Synthetic aliphatic polyesters also showed significant weight losses through 1 year of cultivation. The acidic environment inside simulators generated by the degradation of biodegradable food wastes which comprised 34 % of municipal solid waste seems to cause the weight loss of synthetic aliphatic polyesters.  相似文献   

6.
Polylactic acid (PLA) is one of the important biodegradable polymers. It is widely used in many industrial applications such as films and fibers. Its biodegradability is based on data derived mostly from composting processes. For a broad application of the PLA material in personal care products, an understanding of anaerobic biodegradability is essential because soiled personal care products are usually disposed of in sanitary landfills, where biodegradability mechanisms are predominately in anaerobic conditions. Extensive laboratory results are acquired to elucidate the effects of the temperature on the PLA anaerobic sludge biodegradation. When the temperature is higher than PLA glass transition temperature (Tg), anaerobic degradation is accelerated. A plausible mechanism to explain this observation is that amorphous part of the polymer is easily accessible by microorganisms. When the degrading temperature is below PLA glass transition temperature, sample mineralization under anaerobic conditions is apparently slowed. The mechanisms elucidated by Tg modification can be utilized to control the rate of PLA biodegradation for sustainable waste management.  相似文献   

7.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

8.
Wastewater contains varieties of carbonaceous and nitrogenous compounds that undergo complicated biodegradation processes in wastewater treatment plants. How these different compounds are degraded by activated sludge in aerobic conditions is still a mystery. Researchers have been trying to interpret it using the oxygen uptake rate (OUR) derived from the respirograms of respective substrates. Several models have been proposed to interpret the substrate removal mechanisms using the experimental observations. Have we succeeded in understanding the messages by activated sludge correctly using these models? In this paper, the distinctive nature of the respirograms when activated sludge is fed with different substrates and the biokinetic models that have been developed to explain the substrate removal mechanisms using derived OUR profiles are reviewed. In addition, a sensitivity study was conducted on the recently evolved simultaneous storage and growth model to investigate the influence of key parameters on OUR profiles during the biodegradation process.  相似文献   

9.
The biodegradability (mineralization to carbon dioxide) of acrylic acid oligomers and polymers was studied in activated sludge obtained from continuous-flow activated sludge (CAS) systems exposed to mixtures of low molecular weight (Mw < 8000) poly(acrylic acid)s and other watesoluble polymers [poly(ethylene glycol)s] in influent wastewater. Dilute preparations of activated sludge from the CAS units were tested for their ability to mineralize acrylic acid monomer and dimer, as well as a series of model acrylic acid oligomers and polymers (Mw 500, 700, 1000, 2000, and 4500), as sole carbon and energy sources. Complete mineralization of acrylic acid monomer and dimer was observed in low-biomass sludge preparations previously exposed to the polymer mixture, based on carbon dioxide production and residual dissolved organic carbon analyses. Extensive (though incomplete) degradation was also observed for the low molecular weight acrylic acid oligomers (Mw 500 and 700), but degradation dropped off sharply for the 1000, 2000, and 4500 Mw polymers. Radiochemical (14C) data also confirmed the low degradation potential of the 1000, 2000, and 4500 Mw materials. Degradation of two commercial poly(ethylene glycol)s at 1000 and 3400 Mw was complete and comparable to that of the acrylic acid monomer and dimer. Our results indicate that mixed populations of activated sludge microorganisms can extensively metabolize acrylic acid oligomers of seven units or less. Complete mineralization, however, could be confirmed only for the monomer and dimer material, and carbon mass balance data suggested that the true molecular weight cutoff for complete biodegradation was significantly less than the 500–700 Mw range tested.  相似文献   

10.
Poly(hydroxyalkanoates) (PHAs) are a class of bacterially-derived polymers that are naturally biodegradable through the action of extracellular depolymerase enzymes secreted by a number of different bacteria and fungi. In this paper we describe the development of topographical imaging protocols (by both scanning electron microscopy; SEM, and confocal microscopy; CM) as a means of monitoring the biodegradation of solution cast films of poly(3-hydroxybutanoate-co-3-hydroxyhexanoate) (P3HB/3HHx) and medium-chain-length (mcl-) PHA. Pseudomonas lemoignei and Comamonas P37C were used as sources for PHA depolymerase enzymes as these bacteria are known to degrade at least one of the polymers in question. SEM revealed the bacterial colonization of the film surfaces while CM permitted the comparative assessment of the roughness of the film surfaces upon exposure to the two bacterial strains. By dividing the total surface area of the film (A′) by the total area of the scan (A) it was possible to monitor biodegradation by observing differences in the topography of the film surface. Prior to inoculation, P3HB/3HHx films had an A′/A ratio of 1.06. A 24-h incubation with P. lemoignei increased the A′/A ratio to 1.47 while a 48- and 120-h incubation with Comamonas resulted in A′/A ratios of 1.16 and 1.33, respectively. These increases in the A′/A ratios over time demonstrated an increase in the irregularity of the film surface, indicative of PHA polymer breakdown. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

11.
There is great interest in developing eco-friendly green biocomposites from plant-derived natural fibers and crop-derived bioplastics attributable to their renewable resource-based origin and biodegradable nature. Fully biodegradable composites, made from both biodegradable polymeric matrices and natural fibers, should be advantageous in some applications, such as one way packaging. Polyhydroxyalkanoates (PHAs) are naturally occurring biodegradable polymers produced from a wide range of microorganisms, with poly(3-hydroxybutyrate) P(3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) being important examples of PHAs. In this work, biocomposites of PHBV consisting of a PHBV matrix incorporating peach palm particles (PPp), [i.e., 100/0, 90/10, 80/20 and 75/25 (%w/w) PHBV/PPp] were processed by injection molding at 160 °C. The effect of PPp loading on the thermal and the mechanical properties, as well as on the morphological behavior of the PHBV/PPp biocomposites was investigated. Soil biodegradation tests were carried out by burying specimen beakers containing aged soil and kept under controlled temperature and humidity in accordance with ASTM G160-98. Degradation of the biocomposites was evaluated by visual analysis, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) following test exposures of up to 5 months. The addition of PPp reduced the maximum strength and the elongation at break of the biocomposites. On the other hand, the Young’s modulus improved with the PPp content. Micrographs of the fracture surfaces following tensile strength testing revealed a large distance between the PHBV matrix and PPp particles although a low interaction is expected. Where measured, these distances tended increase as the PPp content of the biocomposites increased. Soil biodegradation tests indicated that the biocomposites degraded faster than the neat polymer due to the presence of cavities that resulted from introduction of the PPp and that degradation increased with increasing PPp content. These voids allowed for enhanced water adsorption and greater internal access to the soil-borne degrader microorganisms.  相似文献   

12.
The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials.  相似文献   

13.
Degradation of Polyethylene Designed for Agricultural Purposes   总被引:1,自引:0,他引:1  
For many years now, scientific articles have been published on the potential biodegradability of polyethylene. Polyethylene (PE) with peroxidant additives, in the form of agricultural films, is sold by various suppliers as biodegradable mulch. Even though, the photo-chemical and thermal degradation of these products under artificial laboratory conditions is highlighted, several extrapolation on the biodegradation and, moreover, on the neutral environmental impact of PE are made. In this study, three different commercial mulch films have been submitted to standardised biodegradation tests and the results are discussed. The first conclusions are that a very low degree of biodegradation of the commercial PE films is achieved from these tests and that crosslinked PE micro-fragments are found in soil after a very long period of time.  相似文献   

14.
An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films   总被引:3,自引:0,他引:3  
The mechanical behavior of various types of biodegradable materials depends, mainly, on their chemical composition and the application conditions. Various additives are added into the bioblends to improve their properties, which sometimes even reach the levels of the conventional plastics. It is well known that the environmental conditions during production, storage, and usage of these materials influence their mechanical properties. Ageing during the useful lifetime also causes great losses in the elongation. In the present paper, the overall mechanical behavior of biodegradable films, which may be considered suitable for agricultural applications, but also of partially biodegradable films, is reviewed and analyzed. Selected critical mechanical properties of films before their exposure to biodegradation are investigated and compared against those of conventional agricultural films.  相似文献   

15.
The use of biodegradable polymers made from renewable agricultural products such as soy protein isolate has been limited by the tendency of these materials to absorb moisture. A straightforward approach for controlling the inherent water absorbency of the biodegradable polymers involves blending special bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter in a high-shear mixer followed by compression molding. The procedure yields a relatively water-resistant, biodegradable soy protein polymer composite, as previously reported. The aim of the present study is to determine the biodegradability of the new polyphosphate filler/soy protein plastic composites by monitoring the carbon dioxide released over a period of 120 days. The results suggest that the composites biodegrade satisfactorily, with the fillers having no significant effect on the depolymerization and mineralization of the soy protein plastic, processes that would otherwise result in nonbiodegradable composites. Further, the results indicate that the biodegradation and useful service life of these biocomposites may be controlled by changing the filler concentration, making the biocomposites useful in applications in which the control of water resistance and biodegradation is critical.  相似文献   

16.
Biodegradability and Biodegradation of Polyesters   总被引:4,自引:0,他引:4  
A variety of biodegradable plastics have been developed in order to obtain useful materials that do not cause harm to the environment. Among the biodegradable plastics, aliphatic polyesters such as: poly(3-hydroxybutyrate) (PHB), poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS), and poly(l-lactide) (PLA) have become the focus of interest because of their inherent biodegradability. However, before their widespread applications, comprehensive studies on the biodegradability and biodegradation mechanisms of these polyesters are necessary. Thus, this paper describes the degradation mechanisms and the effects of various factors on the degradation of polyesters. The distribution of polymer-degrading microorganisms in the environment, different microorganisms and enzymes involved in the degradation of various polyesters are also discussed.  相似文献   

17.
Wheat gluten is a naturally occurring protein polymer. It is biodegradable and very inexpensive (less than $1.00/kg). Nonfood applications of wheat gluten have been explored to develop biodegradable polymers from renewable resources. In this work, gluten was reinforced with unidirectional basalt fibers in a compression molding operation. Biodegradation behavior of wheat gluten/basalt composites was examined by putting specimens into soil of prescribed moisture content. Specimens were removed at various time intervals and tested for mass loss and change in mechanical properties. Both mass and mechanical properties show a steady decline over a soil exposure time of 40 days. However, the basalt composite retained mechanical properties longer. At the same time, the bacterial count on the specimen surfaces increased exponentially. Field emission scanning electron microscope images show smooth fracture surfaces, indicating brittle failure of the wheat gluten. However, there are many small holes in the protein matrix with diameter of order 100 nm. These small inclusions may contribute to the brittleness through stress concentration.  相似文献   

18.
Synthetic polymers are important to the packaging industry but their use raises aesthetic and environmental concerns, particularly with regard to solid waste accumulation problems and the threat to wildlife. Some concerns are addressed by attention to problems associated with source reduction, incineration, recycling and landfill. Others are addressed by the development of new biodegradable polymers either alone or in blends. Materials used for biodegradable polymers include various forms of starch and products derived from it, biopolyesters and some synthetic polymers. Starch is rapidly metabolised and is an excellent base material for polymer blends or for infill of more environmentally inert polymers where it is metabolised to leave less residual polymer on biodegradation. This should help to improve the environmental impact of waste disposal. A number of standard methods have been developed to estimate the extent of biodegradability of polymers under various conditions and with a variety of organisms. They tend to be used mainly in the countries where they were developed but there is much overlap between the standards of different countries and wide scope for development of consistent and international standards.  相似文献   

19.
Journal of Polymers and the Environment - The degradation and stability of biodegradable films determine the service length of mulch films in actual use. Most biodegradable polymers degrade too...  相似文献   

20.
Starch granules were modified with trisodium trimetaphosphate (TSTP) and characterized by P31-NMR, FTIR and DSC. Seventy-micron films were prepared from modified starch and polycaprolactone blends by solvent casting technique. Three different types of films—PCL (100% polycaprolactone), MOD-ST/PCL (50% modified starch and 50% polycaprolactone blend) and NONMOD-ST/PCL (50% nonmodified starch and 50% polycaprolactone blends)—were prepared, and their thermal, mechanical, and morphologic properties were investigated to show the increased performance of PCL with the addition of starch and also the effect of modification. It was observed that with the addition of starch the Young's modulus of polycaprolactone was increased and became less ductile, whereas tensile strength and elongation at break values decreased. Biodegradation of these films was inspected under different aerobic environments with the presence of Pseudomonas putida, activated sludge, and compost. It was observed that whereas P. putida had almost no effect on degradation during 90 days, with the presence of activated sludge, considerable deformation of films was observed even in the first 7 days of degradation. In a compost environment, degradation was even faster, and all polymer films were broken into pieces within first 7 days of degradation and no film remained after 15 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号