首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A critical review of norms and standards and corresponding tests to determine the biodegradability in soil for biodegradable plastics, possibly applicable also to biodegradable agricultural plastics, is presented. There are only a few norms available at the international level about biodegradable plastics in soil. The criteria, parameters and testing methodologies for the characterization, labelling and validation of the agricultural plastic waste streams with respect to possible biodegradation in soil according to existing international standards are analysed while the relevant controversies are identified. To derive the best suited for agricultural plastics specs and testing methods, the possible developments or adaptation of available specs, is investigated. Considering the existing types of biodegradable plastic products in agriculture and their effective life management at the agricultural field, only a few norms appear to provide suitable tests that could be adapted, following appropriate research work, for testing biodegradability in soil under real field conditions. It is shown that some major revisions are needed, with the support of systematic research work, before a new universal norm and standard testing methods become available for testing agricultural plastics for biodegradation under real, and highly variable, soil conditions. Based on the analysis of the different norms and their content it appears necessary to incorporate provisions for transferability of results to different soils and climates, validation of tests through a positive reference and also, set prerequisites for soil media. Long term biodegradation in soil prediction is another open issue.  相似文献   

2.
The field performance of experimental biodegradable drip irrigation thin wall and regular pipes was investigated through three sets of full-scale experiments and in the laboratory. These experimental biodegradable drip irrigation systems were produced through the processing of biodegradable under real soil conditions polymers, Mater-Bi and Bioflex. The mechanical behaviour of the biodegradable thin wall pipes during the irrigation period was more unstable when compared to the corresponding behaviour of the rigid pipes. The tensile strength of the Mater-Bi and Bioflex thin wall pipes remained almost constant during the total exposure time, except from the folding areas. During the first 7–23 days of exposure in the field, the thin wall pipes had already lost more than the 50% of their initial elongation at break value due to degradation. However, their hydraulic performance began to decline only after a period of 100–120 days with the simultaneous formation of the first cracks. Likewise, the majority of the series of biodegradable rigid pipes exhibited a remarkable reduction in their elongation at break values in the transverse direction within the first 2 weeks. Despite the significant drop of the elongation at break, all biodegradable rigid pipes generally retained their tensile strength as well as a satisfactory hydraulic performance during almost the whole duration of their exposure. A few premature leakages in some points adjoining the drippers were observed after 8–10 weeks of exposure.  相似文献   

3.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

4.
Biodegradation of Agricultural Plastic Films: A Critical Review   总被引:5,自引:0,他引:5  
The growing use of plastics in agriculture has enabled farmers to increase their crop production. One major drawback of most polymers used in agriculture is the problem with their disposal, following their useful life-time. Non-degradable polymers, being resistive to degradation (depending on the polymer, additives, conditions etc) tend to accumulate as plastic waste, creating a serious problem of plastic waste management. In cases such plastic waste ends-up in landfills or it is buried in soil, questions are raised about their possible effects on the environment, whether they biodegrade at all, and if they do, what is the rate of (bio?)degradation and what effect the products of (bio?)degradation have on the environment, including the effects of the additives used. Possible degradation of agricultural plastic waste should not result in contamination of the soil and pollution of the environment (including aesthetic pollution or problems with the agricultural products safety). Ideally, a degradable polymer should be fully biodegradable leaving no harmful substances in the environment. Most experts and acceptable standards define a fully biodegradable polymer as a polymer that is completely converted by microorganisms to carbon dioxide, water, mineral and biomass, with no negative environmental impact or ecotoxicity. However, part of the ongoing debate concerns the question of what is an acceptable period of time for the biodegradation to occur and how this is measured. Many polymers that are claimed to be ‘biodegradable’ are in fact ‘bioerodable’, ‘hydrobiodegradable’, ‘photodegradable’, controlled degradable or just partially biodegradable. This review paper attempts to delineate the definition of degradability of polymers used in agriculture. Emphasis is placed on the controversial issues regarding biodegradability of some of these polymers.  相似文献   

5.
During the last few years, biodegradable polymers have been developed to replace petrochemical polymers. Until now, research devoted to these polymers essentially focused on their biodegradability. There is now a need to bear out their nontoxicity. To verify this, the biodegradation must be carried out in accelerated laboratory tests which allow the metabolites and residues to be recovered. To reproduce the natural conditions (compost, field) as closely as possible, degradation experiments must be run on solid-state substrates. We review studies of aerobic degradation in solid-state substrates. This article focuses in particular on the environmental, physical, and chemical parameters (such as substrate nature, moisture, temperature, C/N ratio, and pH) that influence biodegradation kinetics. This study also aims at finding the solid substrate most adapted to residues and metabolite recovery. The most significant parameters would appear to be the substrate type, moisture content, and temperature. Inert substrates such as vermiculite are well suited to residue extraction. This review also opens the field to new research aimed at optimizing conditions for aerobic solid-state biodegradation and at recovering the metabolites and residues of this degradation process.  相似文献   

6.
Degradation of Polyethylene Designed for Agricultural Purposes   总被引:1,自引:0,他引:1  
For many years now, scientific articles have been published on the potential biodegradability of polyethylene. Polyethylene (PE) with peroxidant additives, in the form of agricultural films, is sold by various suppliers as biodegradable mulch. Even though, the photo-chemical and thermal degradation of these products under artificial laboratory conditions is highlighted, several extrapolation on the biodegradation and, moreover, on the neutral environmental impact of PE are made. In this study, three different commercial mulch films have been submitted to standardised biodegradation tests and the results are discussed. The first conclusions are that a very low degree of biodegradation of the commercial PE films is achieved from these tests and that crosslinked PE micro-fragments are found in soil after a very long period of time.  相似文献   

7.
Biodegradable polymers generally decompose in the various media in our environments. These environments contain soils, seawater, and activated sludge. If biodegradable materials waste is discarded, they decompose in these media. The biodegradation process of biodegradable polymers was investigated by scanning electron microscopy. Polycaprolactone, polybutylene succinate, and P(3HB-co-3HV) were tested. The shapes of holes on the decomposing surfaces are different according to the biodegradation media. Semispherical holes are observed on the surfaces of polybutylene succinate films degraded in activated sludge and cracks are observed on the surfaces of polycaprolactone films degraded in soil.  相似文献   

8.
An Overview on the Mechanical Behaviour of Biodegradable Agricultural Films   总被引:3,自引:0,他引:3  
The mechanical behavior of various types of biodegradable materials depends, mainly, on their chemical composition and the application conditions. Various additives are added into the bioblends to improve their properties, which sometimes even reach the levels of the conventional plastics. It is well known that the environmental conditions during production, storage, and usage of these materials influence their mechanical properties. Ageing during the useful lifetime also causes great losses in the elongation. In the present paper, the overall mechanical behavior of biodegradable films, which may be considered suitable for agricultural applications, but also of partially biodegradable films, is reviewed and analyzed. Selected critical mechanical properties of films before their exposure to biodegradation are investigated and compared against those of conventional agricultural films.  相似文献   

9.
Blends of poly(3-hydroxybutyrate) (PHB) and poly(ethylene terephthalate-co-1,4-cyclohexenedimethanol terephthalate) (PETG) were prepared in a batch mixer and in a twin screw extruder and characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), field emission scanning electron microscopy (FE SEM), flexural tests, biodegradation tests in soil compost and in an enzymatic medium. The torque data showed that the addition of PETG to PHB improved its processability. DSC, DMA and FE SEM showed that the polymers are immiscible with morphology dependent on the processing conditions. A fine dispersion of PETG in the PHB matrix was observed for extruded and injection molded blends. Flexural modulus for blends was higher for blends in comparison with PHB, while the impact resistance of blends containing 20 wt% and 30 wt% of PETG is comparable to the value for PHB. PHB is biodegradable, while PETG did not degrade either in simulated soil or in the α-amylase medium. On the other hand, the PHB phase of the blends degrades under these aging conditions. Thus, the addition of PETG to PHB results in advantage such as improving of processability and Young′s modulus without significant changes in the impact resistance while keeping the biodegradability of PHB.  相似文献   

10.
The use of biodegradable polymers made from renewable agricultural products such as soy protein isolate has been limited by the tendency of these materials to absorb moisture. A straightforward approach for controlling the inherent water absorbency of the biodegradable polymers involves blending special bioabsorbable polyphosphate fillers, biodegradable soy protein isolate, plasticizer, and adhesion promoter in a high-shear mixer followed by compression molding. The procedure yields a relatively water-resistant, biodegradable soy protein polymer composite, as previously reported. The aim of the present study is to determine the biodegradability of the new polyphosphate filler/soy protein plastic composites by monitoring the carbon dioxide released over a period of 120 days. The results suggest that the composites biodegrade satisfactorily, with the fillers having no significant effect on the depolymerization and mineralization of the soy protein plastic, processes that would otherwise result in nonbiodegradable composites. Further, the results indicate that the biodegradation and useful service life of these biocomposites may be controlled by changing the filler concentration, making the biocomposites useful in applications in which the control of water resistance and biodegradation is critical.  相似文献   

11.
The performance, the degradability in soil and the environmental impact of biodegradable starch-based soil mulching and low tunnel films were assessed by means of field and laboratory tests. The lifetime of the biodegradable mulches was 9 months and of the biodegradable low-tunnel films 6 months. The radiometric properties of the biodegradable films influenced positively the microclimate: air temperature under the biodegradable low tunnel films was 2 °C higher than under the low density polyethylene films, resulting in an up to 20% higher yield of strawberries. At the end of the cultivation period, the biodegradable mulches were broken up and buried in the field soil together with the plant residues. One year after burial, less than 4% of the initial weight of the biodegradable film was found in the soil. According to ecotoxicity tests, the kinetic luminescent bacteria test with Vibrio fischeri and the Enchytraeus albidus ISO/CD 16387 reproduction potential, there was no evidence of ecotoxicity in the soil during the biodegradation process. Furthermore, there was no change in the diversity of ammonia-oxidizing bacteria in the soil determined on the basis of the appearance of amoA gene diversity in denaturing gradient gel electrophoresis.  相似文献   

12.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

13.
The critical review of norms and standards and corresponding tests to determine the compostability of biodegradable plastics, possibly applicable also to biodegradable agricultural plastics, shows that many norms concerning testing and labelling of compostable plastics have been established at the international level. Some of them are about plastic materials, some others are about products like packaging. The media and conditions of testing cover mainly the conditions designed for industrial composting facilities, and only a few concern home composting conditions. Considering that the end of life management of biodegradable agricultural plastic products will be done at the farm to reduce the management of the waste and also its cost, only a few of these norms are considered to be suitable for adaptation to cover also biodegradable agricultural plastic products. The biodegradability validation criteria under composting conditions, such as the threshold percentage of biodegradation and disintegration, the time and temperature, and the ecotoxicity, are presented for the main norms and standard testing methods. Based on these different norms and their content, a list of specs and technical requirements that could be adapted to meet farm composting conditions for agricultural compostable plastics is proposed. These requirements may be used as criteria for the establishment of a new integrative norm for agricultural compostable plastics.  相似文献   

14.
Synthetic polymers are important to the packaging industry but their use raises aesthetic and environmental concerns, particularly with regard to solid waste accumulation problems and the threat to wildlife. Some concerns are addressed by attention to problems associated with source reduction, incineration, recycling and landfill. Others are addressed by the development of new biodegradable polymers either alone or in blends. Materials used for biodegradable polymers include various forms of starch and products derived from it, biopolyesters and some synthetic polymers. Starch is rapidly metabolised and is an excellent base material for polymer blends or for infill of more environmentally inert polymers where it is metabolised to leave less residual polymer on biodegradation. This should help to improve the environmental impact of waste disposal. A number of standard methods have been developed to estimate the extent of biodegradability of polymers under various conditions and with a variety of organisms. They tend to be used mainly in the countries where they were developed but there is much overlap between the standards of different countries and wide scope for development of consistent and international standards.  相似文献   

15.
A new test method is described for assessing biodegradation of plastic material under simulated soil conditions. An inert substrate can be activated with soil extract and nutrient and used in place of soil in biodegradation tests. The biodegradation level is evaluated by determining the carbon dioxide (CO2) production released by the test reactors. Effects of substrate nature, solution pH, nutrient composition, soil extract concentration, and activation duration on CO2 production were investigated, and the experimental conditions were optimized. Results obtained with cellulose showed a biodegradation rate of 80% within 28 days. Moreover, with this kind of substrate, reaction products and residues can be easily extracted and analysed.  相似文献   

16.
Biodegradable Soy-Based Plastics: Opportunities and Challenges   总被引:3,自引:0,他引:3  
Today's plastics are designed with little consideration for their ultimate disposability or the effect of the resources (feedstocks) used in making them. This has resulted in mounting worldwide concerns over the environmental consequences of such materials when they enter the mainstream after their intended uses. This led to the concept of designing and engineering new biodegradable materials–materials that have the performance characteristics of today's materials but that undergo biodegradation along with other organic waste to soil humic materials. Hence, the production of biodegradable materials from annually renewable agricultural feedstocks has attracted attention in recent years. Agricultural materials such as starches and proteins are biodegradable and environmentally friendly. Soybean is a good candidate for manufacturing a large number of chemicals, including biodegradable plastics, as it is abundantly available and cheap. Soy protein concentrate, isolate, or flakes could be compounded with synthetic biodegradable plastics such as polycaprolactone or poly (lactic acid) to make molded products or edible films or shopping bags and make the environment cleaner and greener.  相似文献   

17.
Polylactic acid (PLA) is one of the important biodegradable polymers. It is widely used in many industrial applications such as films and fibers. Its biodegradability is based on data derived mostly from composting processes. For a broad application of the PLA material in personal care products, an understanding of anaerobic biodegradability is essential because soiled personal care products are usually disposed of in sanitary landfills, where biodegradability mechanisms are predominately in anaerobic conditions. Extensive laboratory results are acquired to elucidate the effects of the temperature on the PLA anaerobic sludge biodegradation. When the temperature is higher than PLA glass transition temperature (Tg), anaerobic degradation is accelerated. A plausible mechanism to explain this observation is that amorphous part of the polymer is easily accessible by microorganisms. When the degrading temperature is below PLA glass transition temperature, sample mineralization under anaerobic conditions is apparently slowed. The mechanisms elucidated by Tg modification can be utilized to control the rate of PLA biodegradation for sustainable waste management.  相似文献   

18.
In this paper we studied the synthesis of biodegradable optically active poly(ester-imide)s containing different amino acid residues in the main chain. These pseudo-poly(amino acid)s were synthesized by polycondensation of N,N′-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a diphenolic monomer and two chiral trimellitic anhydride-derived diacid monomers containing s-valine and l-methionine. The direct polycondensation reaction of these diacids with aromatic diol was carried out in a system of tosyl chloride (TsCl), pyridine (Py) and N,N′-dimethylformamide (DMF) as a condensing agent. The structures and morphology of these polymers were studied by FT-IR, 1H-NMR, powder X-ray diffraction, field emission scanning electron microscopy (FE-SEM), specific rotation, elemental and thermogravimetric analysis (TGA) techniques. TGA profiles indicate that the resulting PEIs have a good thermal stability. Morphology probes showed these polymers were noncrystalline and nanostructured polymers. The monomers and prepared polymers were buried under the soil to study the sensitivity of the monomers and the obtained polymers to microbial degradation. The high microbial population and prominent dehydrogenase activity in the soil containing polymers showed that the synthesized polymers are biologically active and microbiologically biodegradable. Wheat seedling growth in the soil buried with synthetic polymers not only confirmed non-toxicity of polymers but also showed possibility of phyto-remediation in polymer-contaminated soils.  相似文献   

19.
This paper presents a test scheme for assessing the biodegradation potential of polymers, starting with aquatic screening systems (aerobic and anaerobic) and continuing to long-term systems. At the end of the scheme the material has to prove its behavior under the relevant disposal conditions. Aerobic screening was performed mainly under aquatic conditions, but also in soil, using BOD-respirometry. Carbon balances were performed to obtain a better evaluation of the biodegradation potential. Under anaerobic conditions, biodegradation in an aquatic medium was followed by measuring CH4 and CO2 production. Polymers not fully degraded in the screening systems were tested in aquarium systems for at least 1 year. Biodegradation was followed by monitoring the DOC released in the water, mass loss, and microbial growth on the samples and in the water as well as via FTIR spectroscopy and SEM pictures. Results are presented for the polymers PHB, PHBV, PCL, Mater-Bi AI05H and ZF03U, and Bioceta. By combining the data from the screening with the aquarium system, a good picture of the degradation behavior of the polymers is obtained.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.  相似文献   

20.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号