首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
上海市空气中NOx的污染现状及分担率   总被引:2,自引:0,他引:2  
《上海环境科学》2001,20(5):224-226
借鉴国外计算模型和方法,结合调查统计与现场测试,开展了上海市NOx排放的系统研究.结果表明1998年上海市各类固定源和流动源共排放NOx37.7万t,其中工业固定源排放占总量的71%;在中心城区,机动车排放已成为NOx污染的主要来源,占该地区机动车和固定源排放总量的74%.  相似文献   

2.
上海市机动车发展的大气环境容量   总被引:7,自引:2,他引:7  
研究了上海市机动车和固定源排放对环境中NOx 浓度的贡献率 ,采用ADMS Urban空气质量模型从环境容量角度提出上海市机动车发展的总量控制目标 .2 0 0 2年上海全市NOx 排放总量为 39 7× 10 4t/a ,其中中心城区机动车NOx 排放分担率81% ,浓度贡献率为 86 % .为实现 0 0 8mg/m3 年平均浓度容量控制目标 ,上海市机动车NOx 排放总量应控制在 3 5× 10 4t/a以下  相似文献   

3.
济南市机动车排气污染现状与控制对策研究   总被引:12,自引:1,他引:11  
机动车排气污染已经成为济南市空气污染的重要来源,NOx,CO,THC等污染物排放量分别占机动车与固定源排放总量的22%,96%和92%,机动车排气污染使得道路空气环境质量明显恶化。出租车、轿车、摩托车是机动车污染的3种主要车型。文中在阐明造成机动车污染较重的原因基础上,提出了控制机动车污染的管理、技术以及辅助对策。   相似文献   

4.
基于《道路机动车大气污染物排放清单编制技术指南》建立了红河州2019年机动车排放清单。结果表明:2019年红河州CO、HC、NOx、PM2. 5、PM10和SO2排放总量分别为29494、11908、13259、273、301和138t/a。机动车污染物分担率差别显著,小型汽油载客车、轻型汽油载货车和摩托车是CO的主要排放来源,小型汽油载客车和摩托车对HC排放贡献最大,对NOx、PM2. 5和PM10贡献最大的是大型柴油载货车。汽油车是CO和HC机动车污染物排放的主要贡献源,其排放量分别占排放总量的82. 01%和96. 64%,柴油车是NOx、PM2. 5和PM10的主要贡献源。  相似文献   

5.
上海市机动车排气污染负荷的估算   总被引:14,自引:3,他引:14  
根据机动车行驶工况和污染物排放系数测定,定量计算了近年来上海市机动车在实际行驶工况下的污染物排放量,匀速行驶时间仅占13.8%,1995年机动车排放的CO、NMHC和NOx负荷已占中心城区大气污染物排放总量的76%,93%和44%,机动车已成为造成上海市区大气污染的主要排放源。  相似文献   

6.
上海市机动车排污状况与污染控制战略   总被引:22,自引:7,他引:22  
通过对上海市中心城区机动车行驶工史现状的主要特点及发展趋势的分析,计算出中心城区1995年机动车尾气排放的CO、NMHC和NOx负荷,分别占区域内机动车和固定源产排放总量的76%、93%和44%,据预测,到2010年,中心城区内机动车排出的CO、NMHC和NOx负荷,将分别占区域中机动车和固定源排放总量的94%、98%和75%,因此,针对机动车排污所面临的严峻挑战,需要采取加强机动车检查与维修(I  相似文献   

7.
长三角地区以煤烟型污染向区域性复合型大气污染转变的趋势日益突出。该文以常州市区为案例地区,借助于空间地理信息系统(GIS)对各类大气污染贡献源进行分析。研究表明:根据《环境空气质量标准》(GB3095-2012),2012年常州市区空气质量达到二级标准的天数比例为64.5%,较2011年达标天数比例降低了7.3%。从污染物贡献源来看,工业污染是常州市区最主要的大气污染源,主要污染因子为SO2、NOx、颗粒物(PM10、PM2.5),分别占排放总量的99.80%、72.53%、83.01%;交通线源次之,主要污染因子为NOx、CO、VOCs,分别占总量的24.35%、72.89%和67.35%以上;农业面源和生活燃气燃烧对总量贡献相对较小;在此基础上通过GIS叠加分析SO2、NOx、CO、PM10、PM2.5空间排放格局,为有针对性地制定污染控制对策提供科学依据。  相似文献   

8.
以乌鲁木齐市主城区为例,将区域机动车排放清单数据作为排放源数据,利用AERMOD模型对乌鲁木齐市主城区域机动车排放的主要大气污染物质量浓度分布情况进行了数值模拟,并探讨了机动车排放的大气污染物对乌鲁木齐市城市空气质量的影响。结果表明:由机动车排放引起的乌鲁木齐市主城区域大气污染物CO、HC、NOx和PM10的质量浓度分布均表现为新市区和米东区高于其他几个区域,最大影响浓度点出现在新市区河南路北侧和米东区,为机动车所排放的大气污染物影响最为显著的区域;模拟得到的各大气污染物年均质量浓度在网格点最高值均低于相关标准浓度限值;显著影响区域范围内,NOx模拟预测浓度占区域环境空气质量浓度的44.12%,是区域环境空气中NOx的较为重要排放源,而可吸入颗粒物(PM10)仅占0.5%,说明机动车颗粒物排放不是乌鲁木齐城市空气中可吸入颗粒物的主要排放源。  相似文献   

9.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

10.
珠江三角洲非道路移动源排放清单开发   总被引:46,自引:18,他引:28  
根据收集到的珠江三角洲非道路移动源活动水平数据,采用适合各类非道路移动源污染物排放量的估算方法和排放因子,建立了珠江三角洲地区2006年非道路移动源排放清单.结果表明,珠江三角洲地区2006年非道路移动源排放SO2为6.52×104t,NOx为1.24×105t,VOC为4.54×103t,CO为2.67×104t,PM10为4.51×103t.其中船舶为最大的SO2、NOx、CO和PM10排放贡献源,分别占非道路移动源排放总量的96.4%、73.8%、39.4%和50.5%.在船舶排放源中,SO2、NOx、VOC、CO和PM10排放量的89.8%、81.8%、77.3%、79.5%和81.7%来自货轮和散装干货船.非道路移动源已成为该地区第三大SO2和NOx排放贡献源,分别占珠江三角洲大气污染源SO2和NOx排放总量的8.6%和13.5%.  相似文献   

11.
杭州市大气NOx来源及控制对策研究   总被引:3,自引:0,他引:3  
采用定常高斯模式和Thlong程序建立NOx污染源强与大气NOx浓度间定量响应数值模型,计算了点源,面源和流动源等各类的污染源对杭州市区各关心点NOx的平均贡献率,分别约为17%,17%和66%,其中市区机动车尾气贡献率高达50%左右,是首先要控制的污染源。同时提出NOx排放削减方案及实施后大气NOx质量改善状况,为环保管理部门削减NO x污染源提出供决策参考。  相似文献   

12.
为了研究未来北京市机动车排放控制措施的减排效果,本文基于情景分析法,以2010年为基准年,通过设置3类控制措施情景,估算2011~2020年不同情景下北京市机动车常规污染物排放量,并在基准情景基础上,估算污染物减排量,分析控制措施对不同类型机动车的减排贡献.结果表明,尽管未来北京市机动车保有量会有较大增长,实施机动车排放控制措施仍可取得显著的减排效果.单一措施中,淘汰高排放车减排量最大.其中,淘汰轻型客车可有效减少CO的排放,减排贡献率为89.4%;淘汰重型客车可对NOx、HC和PM10达到有效削减,其贡献率分别为65.5%、55.8%、93.4%.实施新的排放标准对重型柴油车的排放也有明显控制效果,且4种污染物都能得到有效削减.综合实施各种措施的效果最为显著,2020年对CO、NOx、HC、PM10的削减效果分别达到46.4%、42.1%、8.6%和50.6%.  相似文献   

13.
北京市轻型汽车排放新标准   总被引:3,自引:0,他引:3  
如何有效地控制汽车污染,已经成为我国一些大型城市迫切需要解决的问题.对北京市机动车污染状况的调查分析表明,NOx和CO的排放分担率已达41%和82%;在4种不同控制方案的排放削减效果与成本计算中发现,严格的新车排放标准,才能有效地削减NOx排放;而且,这些严格的排放标准方案具有更低的削减成本,因此,在具备可行性的前提下,北京市应该尽可能采用严格的新车排放标准方案,才能尽快控制汽车排放污染,改善城市大气环境质量.  相似文献   

14.
采用污染源普查资料与实地调查相结合的方法,对南京市各行业氮氧化物(NOx)排放源及排放量进行调查和梳理。结果表明:各行业NO x排放分担率依次为电力41%、机动车25%、钢铁10%、水泥9%、石化7%、其它工业5%、居民生活3%。针对南京市现状,对重点排放源提出了NO x减排措施与对策。  相似文献   

15.
通过将比值法、主成分分析和正定矩阵分析法相结合对大气中PAHs的污染源进行了解析,结果表明,煤的燃烧和汽车尾气的排放是PAHs的主要污染源,冬季,煤的燃烧是主要污染源,其贡献率为60.6%,其次为汽车尾气排放(34.4%),其他季节,汽车尾气的排放和燃煤污染是主要的污染源,其贡献率分别为59.3%和17.1%。通过等效毒性当量因子计算得到,哈尔滨大气中BaP当量浓度冬季为7.751 9 ng/m3,其他季节为0.688 6 ng/m3,均符合中国规定的10 ng/m3。  相似文献   

16.
2002年2月对重庆市主城区6条交通干道空气中PM10、CO、NOx、THC进行了监测,分析了这些污染物的时空变化特征及其与车流量的关系。结果表明:六条主干道PM10、CO、NOx、THC的日平均浓度分别为0.30、5.34、0.307、12.84 mg/m3,按空气质量二级标准,超标率分别为95%、60%、74%和100%,最大超标倍数分别为4.97、1.94、8.5和6.05。除THC外,按照污染因子分担率评价,在九龙坡区、渝中区和江北区,首要污染物是PM10,在南岸区、沙坪坝区和大渡口区首要污染物是NOx。沙坪坝区CO和NOx污染最严重,九龙坡区PM10污染最严重。CO、NOx的日变化趋势大致相同,而且与车流量关系较为明显,随着车流量的增加CO、NOx的浓度逐渐增加,但PM10与车流量相关性不大,说明PM10浓度还受其它源的影响。  相似文献   

17.
上海城市交通与机动车排气污染调查   总被引:12,自引:0,他引:12  
刘昶  徐渭芳 《上海环境科学》1999,18(12):554-557
上海市机动车保有量逐年增加,车辆的排气污染愈来愈严重,据调查,1997年机动画排放的CO,MNHC,NOX和PM分别达到58.6,9.08,6.20和0.23万吨。中心城区机动车排放的CO,NMHC和NOX污染物50%以上来自于小型车,是影响上海城区环境空气质量的主要污染源。  相似文献   

18.
通过对沈阳市机动车氮氧化物排放现状分析及"十二五"发展情况预测,提出了从控制单车排放、提升油品质量、改善道路工况等方面防治机动车氮氧化物对策建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号